Advertisement

Introduction: Historical Remarks

  • Jin Yoshimura
  • Colin W. Clark
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 98)

Abstract

What is maximized by natural selection? A general answer is the expected reproductive success of the individual; i.e. mean individual fitness. This basic fitness maximization principle underlies much of the modern evolutionary theory of adaptation (Fisher 1930, Williams 1966, Maynard Smith 1978). Criticism of the hypothesis of fitness maximization has, however, also been widespread (e.g. Dupré 1987).

Keywords

Natural Selection Environmental Stochasticity Optimization Principle Stochastic Environment Patchy Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brussard, P.F. 1991. The role of ecology in biological conservation, Ecological Applications 1: 6–12.CrossRefGoogle Scholar
  2. Cannings, C. 1971. Natural selection at a multiallelic autosomal locus with multiple niches, J. Genet. 60: 255–259.CrossRefGoogle Scholar
  3. Caraco, T., S. Martindale, and T.S. Whittam. 1980. An empirical demonstration of risk-sensitive foraging preferences, Anim. Behav. 28: 820–830.CrossRefGoogle Scholar
  4. Charnov, E.L. 1976. Optimal foraging: the marginal value theorem, Theoret. Pop. Biol. 9: 129–136.CrossRefGoogle Scholar
  5. Chesson, P.L. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability, Theoret. Pop. Biol. 28: 263–287.CrossRefGoogle Scholar
  6. Chesson, P.L. and R.R. Warner. 1981. Environmental variability promotes coexistence in lottery competitive systems, Amer. Nat. 117: 923–943.CrossRefGoogle Scholar
  7. Cohen, D. 1966. Optimizing reproduction in a randomly varying environment, J. Theoret. Biol. 12: 119–129.CrossRefGoogle Scholar
  8. Cohen, D. 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcomes, J. Theoret. Biol 16: 1–14.CrossRefGoogle Scholar
  9. Cohen, D. 1968. A general model of optimal reproduction in a randomly varying environment, J. Ecol. 56: 219–228.CrossRefGoogle Scholar
  10. Cohen, D. 1970. A theoretical model for the optimal timing of diapause, Amer. Nat. 104: 389–400.CrossRefGoogle Scholar
  11. Cohen, D. 1976. The optimal timing of reproduction, Amer. Nat. 110: 801–807.CrossRefGoogle Scholar
  12. Cohen, D., and S.A. Levin. 1991. Dispersal in patchy environments: the effects of temporal and spatial structure, Theoret Pop. Biol. 39: 63–99.CrossRefGoogle Scholar
  13. Cooper, W.S. 1984. Expected time to extinction and the concept of fundamental fitness, J. Theoret. Biol. 107: 603–629.CrossRefGoogle Scholar
  14. Cooper, W.S. and R.H. Kaplan. 1982. Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation, J. Theoret. Biol. 94: 135–151.CrossRefGoogle Scholar
  15. Dempster, E.R. 1955. Maintenance of genetic heterogeneity, Cold Spring Harbor Symp. Quant. Biol. 20: 25–32.CrossRefGoogle Scholar
  16. den Boer, P.J. 1968. Spreading of risk and stabilization of animal numbers, Acta Biotheoretica 18: 165–194.CrossRefGoogle Scholar
  17. Dupré, J. (ed.). 1987. The Latest on the Best: Essays in Evolution and Optimality. MIT Press, Cambridge, MA.Google Scholar
  18. Ellner, S. 1985. ESS germination strategies in randomly varying environments. I. Logistic-type models, Theoret Pop. Biol. 28: 50–79.CrossRefGoogle Scholar
  19. Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
  20. Gillespie, J.H. 1977. Natural selection for variance in offspring numbers: a new evolutionary principle, Amer. Nat. 111: 1010–1014.CrossRefGoogle Scholar
  21. Haidane, J.B.S. and S.D. Jayakar. 1963. Polymorphism due to selection of varying direction, J. Genet 58: 237–242.CrossRefGoogle Scholar
  22. Harrison, S. and J.F. Quinn. 1989. Correlated environments and the persistence of metapop-ulations, Oikos 56: 293–298.CrossRefGoogle Scholar
  23. Houston, A.I. and J.M. McNamara. 1988. A framework for the functional analysis of behavior, Behav. Brain Sci. 11: 117–163.CrossRefGoogle Scholar
  24. Lande, R. 1987. Extinction thresholds in demographic models of territorial populations, Amer. Nat 130: 624–635.CrossRefGoogle Scholar
  25. Lande, R. 1988. Genetics and demography in biological conservation, Science 241: 1455–1460.PubMedCrossRefGoogle Scholar
  26. Levene, H. 1953. Genetic equilibrium when more than one niche is available, Amer. Nat. 87: 331–333.CrossRefGoogle Scholar
  27. Levin, S.A., A. Hastings and D. Cohen. 1984. Dispersal strategies in patchy environments, Theoret Pop. Biol. 26: 165–191.CrossRefGoogle Scholar
  28. Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, Princeton, N.J.Google Scholar
  29. Lewontin, R.C. and D. Cohen. 1969. On population growth in a randomly varying environment, Proc. Nat. Acad. Sci. USA 62: 1056–1060.PubMedCrossRefGoogle Scholar
  30. Li, C.C. 1955. The stability of an equilibrium and the average fitness of a population, Amer. Nat. 89: 281–295.CrossRefGoogle Scholar
  31. Mangel, M. and C.W. Clark. 1988. Dynamic Modeling in Behavioral Ecology. Princeton University Press, Princeton, NJ.Google Scholar
  32. Maynard Smith, J. 1978. Optimization theory in evolution, Ann. Rev. Ecol. Syst. 9: 31–56.CrossRefGoogle Scholar
  33. MacArthur, R.H. and E.R. Pianka. 1966. On the optimal use of a patchy environment, Amer. Nat. 100: 603–609.CrossRefGoogle Scholar
  34. McCauley, D.E. 1989. Extinction, colonization, and population structure: a study of the milkweed beetle, Amer. Nat 134: 365–376.CrossRefGoogle Scholar
  35. Monod, J. 1971. Chance and necessity. Vintage Books, New York.Google Scholar
  36. Mountford, M.D. 1968. The significance of litter-size, J. Anim. Ecol. 37: 363–367.CrossRefGoogle Scholar
  37. Murphy, G.I. 1968. Pattern in life history and the environment, Amer. Nat. 102: 390–403.CrossRefGoogle Scholar
  38. Oaten, A. 1977. Optimal foraging in patches: a case for stochasticity, Theoret. Pop. Biol. 12: 263–285.CrossRefGoogle Scholar
  39. Philippi, T. and J. Seger. 1989. Hedging one’s evolutionary bets, revisited, Trends in Evolutionary Ecology 4: 41–44.CrossRefGoogle Scholar
  40. Real, L. 1980. Fitness, uncertainty, and the role of diversification in evolution and behavior, Amer. Nat. 115: 623–638.CrossRefGoogle Scholar
  41. Real, L. and T. Caraco. 1986. Risk and foraging in stochastic environments, Ann. Rev. Ecol. Syst. 17: 371–90.CrossRefGoogle Scholar
  42. Root, R.B. and P.M. Kareiva. 1984. The search for resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of Markovian movements in a patchy environment, Ecology 65: 147–165.CrossRefGoogle Scholar
  43. Roughgarden, J. 1979. Theory of Population Genetics and Evolutionary Ecology: an Introduction. MacMillan, New York.Google Scholar
  44. Schaffer, W.M. 1974. Optimal reproductive effort in fluctuating environments, Amer. Nat. 108: 783–790.CrossRefGoogle Scholar
  45. Schoener, T.W. and D.A. Spiller. 1987. High population persistence in a system with high turnover, Science 330: 470–477.Google Scholar
  46. Seger, J. and J. Brockmann. 1987. What is bet-hedging? Oxford Surveys in Evolutionary Biology. 4: 182–411.Google Scholar
  47. Slatkin, M. 1974. Hedging one’s evolutionary bets, Nature 250: 704–705.Google Scholar
  48. Stearns, C.S. 1976. Life history tactics: A review of the ideas, Quart. Rev. Biol. 51: 3–47.PubMedCrossRefGoogle Scholar
  49. Stephens, D.W. 1981. The logic of risk sensitive foraging preferences, Anim. Behav. 29: 628–629.CrossRefGoogle Scholar
  50. Stephens, D.W. 1989. Variance and the value of information, Amer. Nat. 134: 128–140.CrossRefGoogle Scholar
  51. Stephens, D.W. and J.R. Krebs. 1986. Foraging Theory. Princeton Univ. Press, Princeton, NJ.Google Scholar
  52. Tuljapurkar, S.D. 1989. An uncertain life: demography in random environments, Theoret. Pop. Biol. 35: 227–294.CrossRefGoogle Scholar
  53. Tuljapurkar, S.D. and S.H. Orzack. 1980. Population dynamics in variable environments I. Long-run growth rates and extinction, Theoret. Pop. Biol. 18: 314–342.CrossRefGoogle Scholar
  54. Verner, J. 1965. Selection for the sex ratio, Amer. Nat. 99: 419–421.CrossRefGoogle Scholar
  55. Via, S. and R. Lande. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity, Evolution 39: 505–522.CrossRefGoogle Scholar
  56. Williams, G.C. 1966. Adaptation and Natural Selection. Princeton Univ. Press, Princeton, NJ.Google Scholar
  57. Yoshimura, J. and C.W. Clark. 1991. Individual adaptations in stochastic environments, Evol. Ecol. 5: 173–192.CrossRefGoogle Scholar
  58. Yoshimura, J. and W.M. Shields. 1987. Probabilistic optimization of phenotype distributions: a general solution for the effects of uncertainty on natural selection? Evol. Ecol. 1: 125–138.CrossRefGoogle Scholar
  59. Yoshimura, J. and W.M. Shields. 1992. Components of uncertainty in clutch-size optimization, Bull. Math. Biol. 54: 445–464.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Jin Yoshimura
    • 1
  • Colin W. Clark
    • 2
  1. 1.Department of ZoologyDuke UniversityDurhamUSA
  2. 2.Institute of Applied MathematicsThe University of British ColumbiaVancouverCanada

Personalised recommendations