Advertisement

Exploratory and Confirmatory Discrete Multivariate Analysis in a Probabilistic Approach for Studying the Regional Distribution of Aids in Angola

  • H. Bacelar-Nicolau
  • F. C. Nicolau
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

A hierarchical clustering family based on the affinity coefficient and generated by a suitable extension of the Lance & Williams formula appears to be the support of inferential statistics methodology applied to frequency data set. In this paper we are dealing with contingency tables concerning the distribution of human immunodeficiency viruses (HIV) by regions and subject groups in Angola. Multivariate methods in the clustering family incorporate a subfamily of probabilistic models and inference approach refers to bi/tridimensional loglinear models.

Keywords

Human Immunodeficiency Virus Contingency Table Parametric Family Aggregation Criterion Suitable Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BACELAR-NICOLAU, H. (1972): Analyse d’un Algorithme de Classiñcation Automatique. Rapport MSH, Paris.Google Scholar
  2. BACELAR-NICOLAU, H. (1985): The Affinity Coefficient in Cluster Analysis. Meth.Oper.Res. vol.53, Verlag Anton Hain, p.507–512.Google Scholar
  3. BACELAR-NICOLAU, H. (1988): Two Probabilistic Models for Classification of Variables in Frequency Tables, in: Classif. and Relat. Meth. of Data Analysis, H. H. Bock (ed.). North Holland, p.181–186.Google Scholar
  4. BACELAR-NICOLAU, H.; Mendes-Leal, M. (1990): Análise Multivariada de Dados Discretos. Uma Aplicação à Distribuiçco Regional do Virus da SIDA: Actas I Confer. Estat. Optimização, Tróia, p. 405–417.Google Scholar
  5. BACELAR-NICOLAU, H. (1992): Analyse Multivariée des Données Discrètes: Une Application à l’Etude de la Distribution Régionale des Virus du SIDA dans 1’ Angola. Revue MODULAD, vol 10, p.39–54.Google Scholar
  6. BISHOP, Y.M.M.; FINBERG, S.E.; HOLLAND, F.W. (1975): Discrete Multivariate Analysis, Massachussets Institute of Technology Press.Google Scholar
  7. LERMAN, I.C. (1970): Sur l’Analyse des Donnèes Préalable à une Classification Automatique. Rev.Math, et Se.Hum., vol.32, 8.ème année, p.5–15.Google Scholar
  8. LERMAN, I.C. (1981):Classification et Analyse Ordinale des Données. Dunod, Paris.Google Scholar
  9. MATUSITA, K. (1951): On the Theory of Statistical Decision Functions. Ann. Inst. Stat. Math., vol.111, 1.Google Scholar
  10. NICOLAU, F.C. (1983): Cluster Analysis and Distribution Function. Meth.Oper.Res., vol.45, Verlag Anton Hain, p.431–433.Google Scholar
  11. SANTOS-FERREIRA, M.O. et al. (1980): A Study of Seroprevalence of HIV1 and HIV2 in Six Provinces of the People’s Republic of Angola: Clues to the Spread of HIV Infection. Journal of Acquired Immune Deficiency Syndromes, 3, Raven Press, New York, p.780–786.Google Scholar
  12. TIAGO DE OLIVEIRA, J. (1982): The d-Method for Obtention of Asymptotic Distributions: Applications. Publ.Inst.Stat.Univ.Paris, vol.XXVII, p.49–70.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. Bacelar-Nicolau
    • 1
  • F. C. Nicolau
    • 2
  1. 1.LEAD / FPCEUL, CEA / JNICTUniversity of LisbonPortugal
  2. 2.LB / CTAA, Dep. MathemathicsUniversity of AveiroPortugal

Personalised recommendations