Skip to main content

Sulphur-Derived Species in Polar Ice: A Review

  • Conference paper
Ice Core Studies of Global Biogeochemical Cycles

Part of the book series: NATO ASI Series ((ASII,volume 30))

Abstract

Sulphate, which is one the major ions present in polar ice, has been extensively studied in ice cores since about fifteen years. More recently, a few studies of sulphate concentrations in polar ice have been achieved along with determinations of CH3SO3H (MSA), another important sulphur species trapped in snow layers. Such studies have been conducted along both Greenland and Antarctic ice cores spanning the last decades as well as the last great climate change which occurred some 18,000 years ago. Sulphate trapped in polar ice is associated with several chemical compounds including sea salt, Na2SO4, CaSO4, NH4HSO4, (NH4)2SO4, and H2SO4 which are present in variable proportions depending on the location and on the considered time period. While sulphuric acid dominates the sulphate budget of ice of present-day climatic conditions, the contribution of sulphate associated with sea salt and soil dust increased in ice deposited during past colder climate. NH4HSO4, the concentration of which is insignificant in Antarctic ice, is believed to be present in significant amounts in Greenland ice. Sulphate depth-profiles show that fossil fuel combustion has enhanced sulphate concentrations in Greenland snow by a factor of 2 to 4 since the beginning of this century and that no similar trend occurred in Antarctica. Numerous studies have demonstrated that sulphate concentrations of Greenland and Antarctic ice increased very often, bet for short-time periods (a few months to two years), after large volcanic eruptions. Ice core data also suggest that the non-volcanic natural sulphate background level is mainly marine and biogenic (DMS emissions) in origin in Antarctica under present climatic conditions as well as during the last two ice ages. It is also suggested that the rate of these DMS emissions have changed in the past in response to short and long-term climatic variations. The interpretation of the composition of Greenland ice is more complex and the possible contribution of other non-biogenic sources of sulphate like terrestrial emissions and continuous volcanic degassing will be here discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrie LA, Bottenheim JW (1991) Sulphur and Nitrogen pollution in the Arctic atmosphere. In Pollution of the Arctic atmosphere, Sturges WT ed, 2505–2512

    Google Scholar 

  • Bates TS, Calhoun JA, and Quinn PK (1992a) Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean, J Geophys Res 97:9859–9865

    Article  CAS  Google Scholar 

  • Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992b) Sulfur emissions to the atmosphere from natural sources. J Atmos Chem 14:315–337

    Article  CAS  Google Scholar 

  • Berresheim H (1987) Biogenic sulfur emissions from the sub-antarctic and antarctic oceans. J Geophys Res 92:13245–13262

    Article  CAS  Google Scholar 

  • Bürgermeister S (1991) Atmosphärische Verteilung von Methansulfonat und Sulfat als Oxidationsprodukte von Dimethylsulfid, Diss; Universität Frankfurt a. M., Inst. Met. und Geophysik

    Google Scholar 

  • Castelman AW, Munkelwitz MR, Manowitz B (1974) īsotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, Atmospheric Sulphur, Cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  • Clausen HB, Hammer CU, Christensen J, Schott Hvidberg C, Dahl-Jensen D, Legrand M, Steffensen JP (1995) 1250 years of global volcanism as revealed by central Greenland ice cores. NATO ARW “Ice core studies of global biogeochemical cycles”, this volume

    Google Scholar 

  • Cunningham WC, Zoller WC (1981) The chemical composition of remote area aerosols. J Aerosol Sci 12:367–384

    Article  CAS  Google Scholar 

  • De Angelis M, Legrand M (1994) Origins and variations of fluoride in Greenland precipitation. J Geophys Res, 99:1157–1172

    Article  Google Scholar 

  • Delmas R (1978) Microdosage potentiométrique de l’ion sulphate. Microchim Acta 1:219–228

    CAS  Google Scholar 

  • Delmas R, Boutron C (1978) Sulfate in Antarctic snow: spatio-temporal distribution. Atmos Environ 12:723–728

    Article  CAS  Google Scholar 

  • Delmas R, Boutron C (1980) Are the past variations of the stratospheric sulphate burden recorded in central Antarctic snow and ice layers. J Geophys Res 85:5645–5649

    Article  CAS  Google Scholar 

  • Delmas R (1982) Antarctic sulphate budget. Nature 299:677–678

    Article  Google Scholar 

  • Delmas R (1992) Free tropospheric reservoir of natural sulfate. J Atmos Chem 14:261–271

    Article  CAS  Google Scholar 

  • Delmas R, Kirchner S, Palais JM, Petit JR (1992) 1000 years of explosive volcanism recorded at the South Pole. Tellus 44:335–350

    Article  Google Scholar 

  • Devine JD, Sigurdsson H, Davis AN (1984) Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. J Geophys Res 89:6309–6325

    Article  CAS  Google Scholar 

  • Gibson JAE, Garrick RC, Burton HR, McTaggart AR (1990) Dimethylsulfide and the alga Phaeocystis pouchetii in antarctic coastal waters. Mar Biol 104:339–346

    Article  CAS  Google Scholar 

  • Gjessing Y (1989) Excess and deficit of sulfate in polar snow. Atmos Environ 18:825–830.

    Google Scholar 

  • Gras JL (1983) Ammonia and ammonium concentrations in the atmosphere. Atmos Environ 17:815–818

    Article  CAS  Google Scholar 

  • Greenland Ice-core Project (GRIP) members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364:203–207

    Article  Google Scholar 

  • Hammer CU (1977) Past volcanism revealed by Greenland ice sheet impurities. Nature 270:482–486

    Article  CAS  Google Scholar 

  • Hammer CU (1980) Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes. J of Glaciol 25:359–371

    CAS  Google Scholar 

  • Hansson ME, Saltzman ES (1993) The first Greenland ice core record of methanesulfonate and sulfate over a full glacial cycle, Geophys Res Lett 20:1163–1166

    Article  CAS  Google Scholar 

  • Herron MM (1982) Impurities sources of F, Cl, NO3 and SO4 in Greenland and Antarctic precipitation. J Geophys Res 87:3052–3060

    Article  CAS  Google Scholar 

  • Herron MM, Langway CC Jr (1985) Chloride, nitrate, and sulfate in the Dye 3 and Camp Century, Greenland ice cores in: Langway CC Jr, Oeschger H, Dansgaard W eds, Geophysical Monograph, 33:Greenland ice core: geophysics, geochemistry, and the environment. American Geophysical Union, Washington, DC

    Google Scholar 

  • Hofmann DJ, Rosen JM, Pepin JJ, Pinninck RG (1973) Particles in the polar stratospheres. Nature 245:369–371

    Article  CAS  Google Scholar 

  • Holdsworth G, Peake E (1985) Acid content of snow from a mid-troposphere sampling site on Mount Logan, Yukon Territory, Canada. Annal Glaciol 7:153–160

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans, Wiley — Interscience, New York, Chap 5

    Google Scholar 

  • Ivey JP, Davies DM, Morgan V, Ayers GP (1986) Methanesulphonate in Antarctic ice. Tellus 38:375–379

    Google Scholar 

  • Jaffrezo JL, Davidson CI (1991) Sulphate in the air, surface snow and snowpit at Dye 3, Greenland. In: Precipitation scavenging and atmosphere-surface exchange, Schwartz SE and Slinn WGN eds, Hemisphere Publishing Corporation, Washington DC, 1693–1704

    Google Scholar 

  • Jaffrezo JL, Davidson CI, Legrand M, Dibb J (1994) Sulphate and MSA in the air and snow on the Greenland ice sheet. J Geophys Res, 99:1241–1253

    Article  CAS  Google Scholar 

  • Jaffrezo JL, Dibb J, Bales R, Neftel A (1995) Current atmospheric studies at Summit (Greenland) and implications for future research, NATO ARW “Ice core studies of global biogeochemical cycles”, this volume

    Google Scholar 

  • Jouzel J, Lorius C, Genthon C, Barkov NI, Kotlyakov VM, Petrov VN (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–409

    Article  CAS  Google Scholar 

  • Kirchner S, Delmas R (1988) A 1000 yr glaciochemical study at the South Pole. Ann Glaciol 10:80–84

    CAS  Google Scholar 

  • Laj P, Palais J, Sigurdsson H (1992) Changing sources of impurities to the Greenland ice sheet over the last 250 years. Atmos Environ 26:2627–2640

    Article  Google Scholar 

  • Legrand M, Delmas RJ, Aristarain A (1982) Acid titration of polar snow. Analyt Chem 54:1336–1339

    Article  CAS  Google Scholar 

  • Legrand M, De Angelis M, Delmas R (1983) Ion Chromatographic determination of common ions at ultratrace levels in Antarctic snow and ice. Anal Chim Acta 156:181–192

    Article  Google Scholar 

  • Legrand M, Delmas R (1984) The ionic balance of Antarctic snow: A 10-year detailed record. Atmos Environ 18:1867–1874

    Article  CAS  Google Scholar 

  • Legrand M (1987) Chemistry of antarctic snow and ice. J de Phys 48:77–86

    Google Scholar 

  • Legrand M, Delmas R (1987) A 220-year continuous record of H2SO4 in the Antarctic ice sheet. Nature 327:671–676

    Article  CAS  Google Scholar 

  • Legrand M, Delmas RJ, Charlson RJ (1988a) Climate forcing implications from Vostok ice-core sulphate data. Nature 334:418–419

    Article  CAS  Google Scholar 

  • Legrand M, Lorius C, Barkov NI, Petrov VN (1988b) Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160,000 years). Atmos Environ 22:317–331

    Article  CAS  Google Scholar 

  • Legrand M, Saigne C (1988) Formate, acetate and methanesulfonate measurements in Antarctic ice: some geochemical implications. Atmos Environ 22:1011–1027

    Article  CAS  Google Scholar 

  • Legrand M, Delmas R (1988a) Formation of HCl In the Antarctic atmosphere. J Geophys Res 93:7153–7168

    Article  CAS  Google Scholar 

  • Legrand M, Delmas RJ (1988b) Soluble impurities in four antarctic ice cores over the last 30000 years. Ann Glaciol 10:116–120

    CAS  Google Scholar 

  • Legrand M, Feniet-Saigne C (1991) Strong El Nino revealed by methanesulphonic acid in South Polar snow layers. Geophys Res Lett 18:187–190

    Article  Google Scholar 

  • Legrand M, Feniet-Saigne C, Saltzman ES, Germain C, Barkov NI, Petrov VN (1991) Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 350:144–146

    Article  CAS  Google Scholar 

  • Legrand M, Feniet-Saigne C, Saltzman ES, Germain C (1992) Spatial and temporal variations of methanesulfonic acid and non sea salt sulphate in Antarctic ice. J of Atmos Chem 14:245–260

    Article  CAS  Google Scholar 

  • Legrand M, De Angelis M, Maupetit F (1993) Field investigation of major and minor ions along Summit (Central Greenland) ice cores by ion chromatography. J of Chrom 640:251–258

    Article  CAS  Google Scholar 

  • Legrand M (1993) Ice core analysis in Arctic and Antarctic regions. In NATO ASI series, The tropospheric chemistry of ozone in polar regions, Niki H and Becker KH eds, 205–217

    Chapter  Google Scholar 

  • Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Dansgaard W, Koci B, Davidson CI, Honrath RE (1986) Sulfate and nitrate concentrations from a South Greenland ice core. Science 232:975–977

    Article  CAS  Google Scholar 

  • Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck CF, Whitlow S (1990) An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346:554–556

    Article  CAS  Google Scholar 

  • Minikin A, Wagenbach D, Graf W, Kipstuhl J (1995) Spatial and seasonal variations of the snow chemistry at the central Filchner-Ronne Ice shelf, Antarctica. Ann of Glaciol, in press

    Google Scholar 

  • Mosley-Thompson E, Dai J, Thompson LG, Grootes PM, Arbogast JK, Paskievitch JF (1991) Glaciological studies at Siple Station (Antarctica): potential ice-core paleoclimatic record. J Glaciol 37:11–22

    CAS  Google Scholar 

  • Mulvaney R, Peel D (1988) Anions and cations in ice cores from Dolleman Island and Palmer Land Plateau, Antarctic Peninsula. Annal Glaciol 10:121–125

    CAS  Google Scholar 

  • Mulvaney R, Pasteur EC, Pell DA, Saltzman ES, Whung P-Y (1992) The ratio of MSA to non-sea-salt sulphate in Antarctic peninsula ice cores. Tellus 44:295–303

    Article  Google Scholar 

  • Neftel A, Beer J, Oeschger H, Zurcher F, Finkel RC (1985) Sulphate and nitrate concentrations in snow from South Greenland 1895–1978. Nature 314: 611–613

    Article  CAS  Google Scholar 

  • Palais J, Legrand M (1985) Soluble impurities in the Byrd station ice core, Antarctica: their origin and sources. J Geophys Res 90:1143–3154

    Article  CAS  Google Scholar 

  • Peel DA, Mulvaney R (1992) Time-trends in the pattern of ocean-atmosphere exchange in an ice core from the Weddell Sea sector of Antarctica. Tellus 44:430–442

    Article  Google Scholar 

  • Radke LF (1982) Sulphur and sulphate from Mt Erebus. Nature 299:710–712

    Article  CAS  Google Scholar 

  • Saigne C, Legrand M (1987) Measurements of methanesulphonic acid in Antarctic ice. Nature 330:240–242

    Article  CAS  Google Scholar 

  • Saltzman ES, Savoie DL, Zika RG, Prospero JM (1983) Methanesulfonic acid in the marine atmosphere. J Geophys Res 88:10897–10902

    Article  CAS  Google Scholar 

  • Saltzman E (1995) Ocean/atmosphere cycling of dimethylsulfide: sensitivity to climate change, NATO ARW “Ice core studies of global biogeochemical cycles”, this volume

    Google Scholar 

  • Silvente E, Legrand M (1993) Ammonium to sulphate ratio in aerosol and snow of Greenland and Antarctic regions. Geophys Res Lett 20:687–690

    Article  CAS  Google Scholar 

  • Steffensen JP (1988) Analysis of the seasonal variations of dust, Cl, NO3 , and SO4 in two Central Greenland firn cores. Ann Glaciol 10:171–177

    CAS  Google Scholar 

  • Turco RP, Whitten RC, Toon OB, Pollack JB, Hamill P (1980) OCS stratospheric aerosols and climate. Nature 283:283–286

    Article  CAS  Google Scholar 

  • Udisti R, Barbolani E, Piccardi G (1991) Determination of some organic and inorganic substances present at ppb level in Antarctic snow and ice by ion chromatography. Annali di Chimica 81:325–341

    CAS  Google Scholar 

  • Wagenbach D, Munnich KO, Schotterer U, Oeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Annal Glaciol 10:183–187

    CAS  Google Scholar 

  • Warren SG (1994) Biological sulfur, clouds and climate, NATO ARW “Ice core studies of global biogeochemical cycles”, this volume

    Google Scholar 

  • Welch KA, Mayewski PA, Whitlow SI (1993) Methanesulfonic acid in coastal antarctic snow related to sea-ice extent. Geophys Res Lett 20:443–446

    Article  Google Scholar 

  • Whitlow S, Mayewski PA, Dibb J (1992) A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit, Greenland. Atmos Environ 26:2045–2054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Legrand, M. (1995). Sulphur-Derived Species in Polar Ice: A Review. In: Delmas, R.J. (eds) Ice Core Studies of Global Biogeochemical Cycles. NATO ASI Series, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51172-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51172-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51174-5

  • Online ISBN: 978-3-642-51172-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics