Skip to main content

Laserchemische Abscheidung von Festkörpern aus der Gasphase

  • Chapter
Angewandte Laserchemie

Part of the book series: Laser in Technik und Forschung ((LASER TECHNIK))

  • 92 Accesses

Zusammenfassung

Die laserchemische Abscheidung von Festkörpern aus der Gasphase kann unmittelbar in der Gasphase und auf einer Festkörperoberfläche erfolgen. Im ersten Fall, der Gasphasennukleation, bilden sich feine Pulver. Ihre mittlere Teilchengröße kann im sub-μm-Bereich liegen. Sie werden dann auch Nanopulver genannt (Abschn. 6.1). Im zweiten Fall der Gasphasenabscheidung werden in der Gasphase oder auf der bestrahlten Oberfläche Spezies gebildet, welche auf dem vorhandenen Festkörper eine neue Oberflächenschicht bilden (Abschn. 6.2). Je nach Art der chemischen Ausgangsverbindungen und Prozeßbedingungen können amorphe oder kristalline Schichten entstehen, in chemisch reiner Form oder als Gemische. Zu den chemischen Elementen, welche alle genannten Arten der Gasphasenabscheidung zeigen, gehört das Silizium. Ausgehend von Siliziumwasserstoffen ist es möglich, Siliziumpulver sowie amorphe und kristalline Siliziumschichten zu erzeugen. Daher bietet sich neben anderen das Siliziumwasserstoffsystem für direkte Verfahrensvergleiche an.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Tam, A., G. Moe und W. Happer, Particle Formation by Resonant Laser Light in Alkali-Metal Vapor, Phys.Rev.Lett. 35 (1975) 1630–1633 sowie Happer, W., Opt.Commun. 18 (1976) 93

    Google Scholar 

  2. Ernst, K., Laser snow, chemistry, kinetics, applications, in “Photon-assisted collisions and related topics”, Herausg. N.K. Rahman et al., Chur 1982, S. 321–341

    Google Scholar 

  3. Gianinoni, I. und M. Musci, Laser Materials Production, Nucl.Instr.Methods Phys. Res. A 239 (1985) 406–413 sowie Curcio, F., G. Ghiglione, M. Musci und C. Nannetti Synthesis of Silicon Carbide Powders by a cw CO2 Laser, Appl.Surf Sci. 36 (1989) 52–58

    Google Scholar 

  4. Borsella, E. und R. Fantoni, Synthesis and Characterization of Laser Driven Powders, pres. at Workshop on Emerging Technologies, Cargese, May 4–8, 1987, ENEA Report RT/TIB/87/25; ISSN/0393–6333 sowie Borsella, E., L. Caneve und R. Fantoni Pulsed CO, Laser Driven Production of Si, Si3N4 and SiC Powders, ENEA Report RT/TIB/87/26

    Google Scholar 

  5. Suyama, Y., R.M. Marra, J.S. Haggerty und H. K. Bower, Synthesis of Ultrafine SiC Powders by Laser Driven Gas Phase Reactions, Am.Ceram.Soc.Bull. 64 (1985) 1356–1359

    Google Scholar 

  6. Haggerty, J.S. und W.R. Cannon, Sinterable Powders from Laser-Driven Reactions, in “Laser-Induced Chemical Processes”, Herausg. J.I. Steinfeld, Plenum, New York 1981, S. 165–241

    Google Scholar 

  7. Frurip, D.J., P.R. Staszak und M. Blander, J.Non-Cryst.Solids 68 (1984) 1

    Google Scholar 

  8. Gupta, A., A. West und J.P. Donlan, Proc.Soc.Photo-Opt.Instr.Eng.(SPIE) 458 (1984) 61

    Google Scholar 

  9. Gupta, A., K.W. Beeson, J.P. Donlan und G.A. West, Titanium silicide ultrafine powder: CO2 laser generation and thin film applications, J.Appl.Phys. 61 (1987) 1162–1167

    Google Scholar 

  10. Rice, G.W. und R.L. Woodin, Laser synthesis of powders from large molecules, Proc.Soc.Photo-Opt.Instr. Eng. (SPIE) 458 (1984) 98

    Google Scholar 

  11. Cannon, W.R., S.C. Danforth, J.H. Flint, J.S. Haggerty und R.A. Marra, Sinterable Ceramic Powders from Laser Driven Reactions: I. Process, Description and Modeling, J.Am.Ceram.Soc. 65 (1982) 324–330

    Google Scholar 

  12. Cannon, W.R., S.C. Danforth, J.S. Haggerty und R.A. Marra, Sinterable Ceramic Powders from Laser Driven Reactions: II. Powder, Characteristics and Process Variables, J.Am.Ceram.Soc. 65 (1982) 330–335

    Google Scholar 

  13. Flint, J.H. und J.S. Haggerty, Ceramic Powders from Laser Driven Reactions, Proc.Soc.Photo-Opt.Instr. Eng. (SPIE) 458 (1984) 108

    Google Scholar 

  14. Gupta, A. und J.T. Yardley, Production of light olefins from synthesis gas using catalysts prepared by laser pyrolysis, Proc.Soc.Photo-Opt.Instr.Eng.(SPIE) 458 (1984) 131

    Google Scholar 

  15. Shimo, N. und K. Yoshihara, Fine Metal Particle Formation from Organometallic Compounds by Laser Ignited Mild Explosive Reaction, Mat.Res.Soc.Symp.Proc. 129 (1989) 99–104

    Google Scholar 

  16. Buerki, P.R. und S. Leutwyler, Homogeneous nucelation of diamond powder by CO2-laser-driven gas-phase reactions, J.Appl.Phys. 69 (1991) 3739–3744

    Google Scholar 

  17. Gonsalves, K.E., P.R. Strutt und T.D. Xiao, Synthesis of Ceramic Nanoparticles by the Ultrasonic Injection of an Organosilazane Precursor, Adv.Mater. 3 (1991) 202–204

    Google Scholar 

  18. Cauchetier, M., O. Croix, M. Luce, M. Michon, J. Paris und S. Tistchenko, Laser synthesis of ultrafine powders, in “High Tech Ceramics”, Herausgeber P. Vincenzini, Elsevier, Amsterdam 1987, S. 545–553; ebenso veröffentlicht in Ceramics International, Band 13, No. 1

    Google Scholar 

  19. Chorley, R.W. und P.W. Lednor, Synthetic Routes to High Surface Area Non-Oxide Materials, Adv.Mater. 3 (1991) 474–485

    Google Scholar 

  20. Shimo, N., N. Nakashima und K. Yoshihara, Laser-Ignited Explosive Decomposition of Organometallic Compounds, Chem. Phys.Lett. 156 (1989) 31–34

    Google Scholar 

  21. Shimo, N. und K. Yoshihara, Laser Production of Metal Fine Particles from Organometallic Compounds, High.Temp.Sci. 27 (1990) 89–95

    Google Scholar 

  22. Shimo, N., M. Fujita und H. Kuma, Highly efficient formation of metal and metal alloy particles from methyl metal compounds by a single pulse laser irradiation, Appl.Organomet.Chem. 5 (1991) 303–307

    Google Scholar 

  23. Ho, P., M.E. Coltrin, J.S. Binkley und C.F. Melius, A Theoretical Study of the Heats of Formation of Si2Hn (n = 0–6) Compounds and Trisilane, J.Phys.Chem. 90 (1986) 3399–3407

    Google Scholar 

  24. Willwohl, H. und J. Wolfrum, Excimer laser photolysis of metalorganic complexes of platinum and palladium in the gas phase, Appl.Surf.Sci. 54 (1992) 89–94

    Google Scholar 

  25. Gleiter, H., Nanostrukturierte Materialien, Phys.Bl. 47 (1991) 753–759 sowie Nanocrystalline Materials, in “Advanced Structural and Functional Materials”, Herausgeber W.G.J. Bunk, Springer, Berlin 1991, S. 1–37

    Google Scholar 

  26. Göbel, E., Künstliche Übergitter in Festkörpern (Einführung), Phys.Bl. 45 (1989) 435–436

    Google Scholar 

  27. Döhler, G.H., Künstliche Übergitter in Halbleitern, Phys. B1. 45 (1989) 436–441

    Google Scholar 

  28. Ley, L., Amorphe Übergitter, Phys.Bl. 45 (1989) 442–446

    Google Scholar 

  29. Hillebrands, B. und G. Güntherodt, Metallische Übergitter, Phys. B1. 45 (1989) 447–452

    Google Scholar 

  30. Siegel, R.W., Cluster-Assembled Nanophase Materials, Ann.Rev.Mater.Sci. 21 (1991) 559–578

    Google Scholar 

  31. Opitz, J., Conference Report: Ceramic Powder Processing in San Diego, Adv. Mater. 2 (1990) 499–501

    Google Scholar 

  32. Jasinski, J.M., B.S. Meyerson und B.A. Scott, Mechanistic Studies of Chemical Vapor Deposition, Ann.Rev.Phys.Chem. 38 (1987) 109–140

    Google Scholar 

  33. Bauerle, D., Chemical Processing with Lasers, Springer Series in Materials Science, Band 1, Springer, Berlin 1986

    Google Scholar 

  34. Boyd, I.W., Laser Processing of Thin Films and Microstructures, Springer Series in Materials Science, Band 3, Springer, Berlin 1987

    Google Scholar 

  35. Ehrlich, D.J. und J.Y. Tsao (Herausgeber), Laser Microfabrication - Thin Film Processes and Lithography, Academic Press, Boston 1989

    Google Scholar 

  36. Johnson, A.W., G.L. Loper und T.W. Sigmon (Herausgeber), Laser-and Particle-Beam Chemical Processes on Surfaces, Mat.Res.Soc.Symp. Proc., Band 129, Pittsburgh 1989

    Google Scholar 

  37. Osgood, R.M. Jr., Laser Microchemistry and Its Application to Electron-Device Fabrication, Ann. Rev.Phys.Chem. 34 (1983) 77–101

    Google Scholar 

  38. Ehrlich, D.J. und J.Y. Tsao, A review of laser-microchemical processing, J.Vac.Sci.Technol. B 1 (1983) 969–984

    Google Scholar 

  39. Bauerle, D., Laser-Induced Chemical Vapor Deposition, Springer Series in Chemical Physics, Band 39, Springer, Berlin 1984, S. 166–182

    Google Scholar 

  40. Osgood, R.M. Jr. und H.H. Gilgen, Laser Direct Writing of Materials, Ann.Rev.Mater.Sci. 15 (1985) 549–576

    Google Scholar 

  41. Solanki, R., C.A. Moore und G.J. Collins, Laser-Induced Chemical Vapor Deposition, Solid State Technology, Juni 1985, S. 220–227

    Google Scholar 

  42. Rytz-Froidevaux, Y., R.P. Salathe und H.H. Gilgen, Laser Generated Microstructures, Appl.Phys. A 37 (1985) 121–138

    Google Scholar 

  43. Bernhardt, A.F., B.M. McWilliams, F. Mitlitsky und J.C. Whitehead, Laser Microfabrication Technology and Its Application to High Speed Interconnect of Gate Arrays, Mat.Res.Soc.Symp.Proc. 75 (1987) 633–644 sowie ibid. 76 (1987) 223–234

    Google Scholar 

  44. Hanabusa, M., Photoinduced Deposition of Thin Films, Mat.Sci.Rep. 2 (1987) 51–98

    Google Scholar 

  45. Stafast, H., State and perspectives of laser applications in advanced chemistry, Commission of the European Communities, Report EUR 11795 EN, Brüssel 1988

    Google Scholar 

  46. Bauerle, D., Chemical Processing with Lasers: Recent Developments, Appl.Phys. B 46 (1988) 261–270

    Google Scholar 

  47. Reiße, G., S. Weißmantel und K, Zimmer, Laserinduzierte Abscheidung, Erzeugung und Modifizierung von Schichten, in KDT-Lehrgang “Lasertechnik”, Lehrmaterial 1: Zum Stand der Lasermaterialbearbeitung, G. Zscherpe, G. Reiße und A. Fischer (Herausgeber), Kammer der Technik, Berlin 1988, S. 19–55

    Google Scholar 

  48. Herman, I.P., Laser-Assisted Deposition of Thin Films from Gas-Phase and Surface-Adsorbed Molecules, Chem.Rev. 89 (1989) 1323–1357, Übersichtsartikel mit 376 Zitaten

    Google Scholar 

  49. Kompa, K.L., Laser-Photochemie an Oberflächen–laserinduzierte Gasphasenabscheidung und verwandte Phänomene, Angew.Chem. 100 (1988) 1287–1299

    Google Scholar 

  50. Bäuerle, D., B. Luk’yanchuk und K. Piglmayer, On the Reaction Kinetics in Laser-Induced Pyrolytic Chemical Processing, Appl.Phys. A 50 (1990) 385–396

    Google Scholar 

  51. Baum, T.H. und P.B. Comita, Laser-induced chemical vapor deposition of metals for microelectronics technology, Thin Solid Films 218 (1992) 80–94

    Google Scholar 

  52. Yabuzaki, T., T. Sato und T. Ogawa, Laser production of NaH crystalline particles, J.Chem.Phys. 73 (1980) 2780

    Google Scholar 

  53. Scholz, M., W. Fuß und K.-L. Kompa, Chemical Vapor Deposition of Silicon Carbide Powders Using Pulsed CO2 Lasers, Adv.Mater. 5 (1993) 38–40

    Google Scholar 

  54. Coltrin, M.E., R.J. Kee und J.A. Miller, A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor,.J.Electrochem.Soc. 131 (1984) 425–434 sowie Patnaik, S. und R.A. Brown Convection and Mass-Transport in Laser-Induced Chemical Vapor Deposition, J.Electrochem.Soc. 135 (1988) 697–706

    Google Scholar 

  55. Heywang, W. und R.D. Plättner, Amorphes Silizium - ein neues Halbleitermaterial für Solarzellen, Metall 37 (1983) 49

    Google Scholar 

  56. Joannopoulos, J.D. und G. Lukovsky (Herausgeber), The Physics of Hydrogenated Amorphous Silicon, I und II, Topics in Applied Physics, Band 55 und 56, Springer, Berlin 1984

    Google Scholar 

  57. Pankove, J.I. (Herausgeber), Hydrogenated Amorphous Silicon, Semiconductors and Semimetals, Band 21, Academic, Orlando 1984

    Google Scholar 

  58. Winterling, G., Amorphes Silizium (a-Si), Physik in unserer Zeit 16 (1985) 50–62

    Google Scholar 

  59. Takahashi, K. und M. Konagai, Amorphous Silicon Solar Cells, Academic, Oxford 1986

    Google Scholar 

  60. Böhm, M., Advances in Amorphous Silicon Based Thin Film Microelectronics, Solid State Technology, September 1988, S. 125–131

    Google Scholar 

  61. Le Comber, P.G., Present and Future Applications of Amorphous Silicon and Its Alloys, J.NonCryst.Solids 115 (1989) 1–13

    Google Scholar 

  62. Elliot, S.R., The structure of amorphous hydrogenated silicon and its alloys: A review, Adv.Phys. 38 (1989) 1–88; detaillierte Beschreibung

    Google Scholar 

  63. Stafast, H., Initial Steps in the Photochemical Vapour Deposition of Amorphous Silicon, Appl.Phys. A 45 (1988) 93–102

    Google Scholar 

  64. Meunier, M., J.H. Flint, J.S. Haggerty und D. Adler, Laser-Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon. I. Gas-Phase Process Model, J.Appl.Phys. 62 (1987) 2812–2821

    Google Scholar 

  65. Itoh, U., Y. Toyoshima, H. Onuki, N. Washida und T. Ibuki, Vacuum Ultraviolet Absorption Cross Sections of SiH4, GeH4, Si2H6, and Si3H8, J.Chem.Phys. 85 (1986) 4867–4872

    Google Scholar 

  66. Tanaka, H., L. Boesten, M. Kimura. M.A. Dillon und D. Spence, Observation of the Lowest Triplet State in Silane by Electron Energy Loss Spectroscopy, J.Chem.Phys. 92 (1990) 2115–2116

    Google Scholar 

  67. Curcio, F., I. Gianinoni und M. Musci, CO2 Laser-Assisted Deposition of Amorphous Semiconductors, in “Laser Processing and Diagnostics (II)”, E-MRS Spring Conf Proceed., Strasbourg, Juni 1986, D. Bauerle, K.L. Kompa, und L.D. Laude (Herausgeber), Edit. de Physique, Les Ulis 1986, S. 117–123

    Google Scholar 

  68. Branz, H.M., L.K. Liem, C.J. Harris, S. Fan, J.H. Flint, D. Adler und J.S. Haggerty, Laser-Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon: Photovoltaic Devices and Material Properties, Solar Cells 21 (1987) 177–188

    Google Scholar 

  69. Golusda, E., R. Lange, G. Mollekopf und H. Stafast, On the Role of the Substrate Position in the CO2 Laser CVD of Amorphous Hydrogenated Silicon, Appl.Surf.Sci. 46 (1990) 230–232

    Google Scholar 

  70. Golusda, E., R. Lange, K.-D. Lühmann, G. Mollekopf, M. Wacker und H. Stafast CW, CO2 laser CVD of amorphous hydrogenated silicon (a-Si:H): influence of the deposition geometry, Appl.Surf Sci. 54 (1992) 30–34

    Google Scholar 

  71. Metzger, D., K. Hesch und P. Hess, Process Characterization and Mechanism for Laser-Induced Chemical Vapor Deposition of a-Si:H from SiH4, Appl.Phys. A 45 (1988) 345–353

    Google Scholar 

  72. Veprek, S., F.-A. Sarrot, S. Rambert und E. Taglauer, Surface hydrogen content and passivation of silicon deposited by plasma induced chemical vapor deposition from silane and the implications for the reaction mechanism, J.Vac.Sci.Technol. A 7 (1989) 2614–2624

    Google Scholar 

  73. Meunier, M., J.H. Flint, J.S. Haggerty und D. Adler, Laser-Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon. II. Film Properties, J.Appl.Phys. 62 (1987) 2822–2831

    Google Scholar 

  74. Roth, A., S. Chiussi, T.R. Dietrich und F.-J. Comes, Hydrogenated Amorphous Silicon by Infrared Multiphoton Absorption with a Pulsed CO2-Laser, Ber.Bunsenges.Phys.Chem. 94 (1990) 1105–1110

    Google Scholar 

  75. Yamada, A., M. Konagai and K. Takahashi, Excimer-Laser-Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon, Jpn.J.Appl.Phys. 24 (1985) 1586–1589

    Google Scholar 

  76. Tanaka, K. and A. Matsuda, Glow-Discharge Amorphous Silicon: Growth Process and Structure, Mat.Sci.Rep. 2 (1987) 139–184

    Google Scholar 

  77. Dietrich, T.R., S. Chiussi, H. Stafast and F.J. Comes, ArF Laser CVD of Hydrogenated Amorphous Silicon: The Role of Buffer Gases, Appl.Phys. A 48 (1989) 405–414

    Google Scholar 

  78. Hesch, K., S. Hess. H. Oetzmann and C. Schmidt, Precision Surface Temperature Measurement and Film Characterization for LICVD of a-Si:H from SiH4 Appl.Surf.Sci. 36 (1989) 81–88

    Google Scholar 

  79. Golusda, E., S. Hessenthaler, G. Mollekopf and H. Stafast, SF6 sensitized CO2 laser CVD of amorphous silicon, Appl.Surf.Sci., im Druck

    Google Scholar 

  80. Barth, M., S. Hess, G. Mollekopf and H. Stafast, in Vorbereitung

    Google Scholar 

  81. Martin, J.G., H.E. O’Neal and M.A. Ring, Thermal Decomposition Kinetics of Polysilanes: Disilane, Trisilane, and Tetra-silane, Int.J.Chem.Kinet. 22 (1990) 613–632

    Google Scholar 

  82. Dietrich, T.R., S. Chiussi, M. Marek, A. Roth and F.J. Comes, Role of Silylene in the Deposition of Hydrogenated Amorphous Silicon, J.Phys.Chem. 95 (1991) 9302–9310

    Google Scholar 

  83. Zavelovich, J. and J.L. Lyman, Photochemical Synthesis of Disilane from Silane with Infrared Laser Radiation, J.Phys.Chem. 93 (1989) 5740–5745

    Google Scholar 

  84. Bayer, E., W. Kusian and G. Schneider, ArF Laser Photochemical Vapor Deposition of Si Films with Various Carrier Gases, Siemens Forsch.- u. Entwickl.-Ber. 17 (1988) 190–194

    Google Scholar 

  85. Lowndes, D.H., D.B. Geohegan, D. Eres, S.J. Pennycook, D.N. Mashburn and G.E. Jellison Jr., Low Temperature Photon-Controlled Growth of Thin Films and Multilayered Structures, Appl.Surf.Sci. 36 (1986) 56–69 sowie Lowndes, D.H., D.B. Geohegan, D. Eres, S.J. Pennycook, D.N. Mashburn and G.E. Jellison Jr. Photon-controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis, Appl.Phys.Lett. 52 (1988) 1868–1870

    Google Scholar 

  86. Hess, P., Chemical vapor deposition of amorphous hydrogenated silicon: Chemistrystructure-performance relationships, J.Vac.Sci.Technol. B10 (1992) 239–247

    Google Scholar 

  87. Hesch, K., H. Karstens and P. Hess, Chemical vapour deposition of amorphous hydrogenated silicon with a CO2 laser: chemical mechanism, Thin Solid Films 218 (1992) 29–39

    Google Scholar 

  88. Burke, H.H., I.P. Herman, V. Tavitian and J.G. Eden, Laser photochemical deposition of germanium-silicon alloy thin films, Appl.Phys. Lett. 55 (1989) 253–255

    Google Scholar 

  89. Uwasawa, K., F. Ishihara and S. Matsumoto, X-ray photoelectron spectroscopy analysis of photostimulated chemical vapor deposition hydrogenated amorphous silicon/amorphous aluminum oxide, Appl. Phys.Lett. 60 (1992) 1208–1210

    Google Scholar 

  90. Zarnani, H., H. Demiryont und G.J. Collins, Optical properties of UV laser photolytic deposition of hydrogenated amorphous silicon (a-Si:H), J.Appl.Phys. 60 (1986) 2523–2529

    Google Scholar 

  91. Toyoshima, Y., K. Kumata, U. Itoh und A. Matsuda, Hydrogenated amorphous silicon prepared by ArF and FZ excimer laser-induced photochemical vapor deposition, Appl.Phys.Lett. 51 (1987) 1925–1927

    Google Scholar 

  92. Skouby, D.C. und K.F. Jensen, Modeling of pyrolytic laser-assisted chemical vapor deposition: Mass transfer and kinetic effects influencing the shape of the deposit, J.Appl.Phys. 63 (1988) 198–206

    Google Scholar 

  93. Christensen, C.P. und K.M. Lakin, Chemical vapor deposition of silicon using a CO2 laser, Appl.Phys.Lett. 32 (1978) 254–256

    Google Scholar 

  94. Tonneau, D., J. Pauleau und G. Auvert, Chemical processes promoted by CO2 laser-assisted decomposition of silane on silica substrates, J.Appl.Phys. 65 (1989) 4410–4413

    Google Scholar 

  95. Auvert, G., D. Tonneau und Y. Pauleau, Evidence of a photon effect during the visible laser-assisted deposition of polycrystalline silicon from silane, Appl.Phys.Lett. 52 (1988) 1062–1064

    Google Scholar 

  96. Yamada, A., A. Satoh, M. Konagai und K. Takahashi, Low-temperature (600–650°C) silicon epitaxy by excimer laser-assisted chemical vapor deposition, J.Appl.Phys. 65 (1989) 4268–4272

    Google Scholar 

  97. Zenobi, R., J.H. Hahn und R.N. Zare, Surface Temperature Measurement of Dielectric Materials Heated by Pulsed Laser Radiation, Chem.Phys.Lett. 150 (1988) 361–365

    Google Scholar 

  98. Preuß, S., Experimente zur laserchemischen Abscheidung von Metallen, Diplomarbeit, Universität Frankfurt, 1990

    Google Scholar 

  99. Hollemann, A.F. und E. Wiberg, Lehrbuch der anorganischen Chemie, Walter de Gruyter, 57.-70. Auflage, Berlin 1964, S. 557

    Google Scholar 

  100. Schmidt, M., Anorganische Chemie 2, B.I. Hochschultaschenbücher, Band 150, B.I. Wissenschaftsverlag, Mannheim 1969, S. 65

    Google Scholar 

  101. Schröder, H., S. Metev, W. Robers und B. Rager, Photochemistry of Surface Metallization with Excimer Lasers, in “Laser Processing and Diagnostics (II)”, D. Bäuerle, K.L. Kompa, und L.D. Laude (Herausgeber), Edit. de Physique, Les Ulis 1986, S. 71–77

    Google Scholar 

  102. Schröder, H., B. Rager, S. Metev, N. Rösch und H. Jörg, Photochemistry of Transition Metal Complexes, in “Interfaces Under Laser Irradiation”, ConfProceed. NATO Advanced Study Institute, 14.-26.Juli 1986, Maraka, Italien, Herausg. L.D. Laude, D. Bäuerle und M. Wautelet, Martinus Nijhoff, Boston 1987, S. 255–276

    Google Scholar 

  103. Rager, B., W. Robers, H. Schröder und K.L. Kompa, Beam Studies of LCVD, in “Lasers Processing and Diagnostics (II)”, D. Bäuerle, K.L. Kompa und L.D. Laude (Herausgeber), Edit. de Physique, Les Ulis 1986, 5. 101–106

    Google Scholar 

  104. Schröder, H., K.L. Kompa, D. Masci und I. Gianinoni, Investigation of UV-Laser Induced Metallization: Platinum from Pt(PF,)„ Appl.Phys. A 38 (1985) 227–233

    Google Scholar 

  105. Stevens, A.E., C.S. Feigerle und W.C. Lineberger, Laser photoelectron spectrometry of Ni(CO)n - n = 1–3, J.Amer.Chem.Soc. 104 (1982)5026–5031

    Google Scholar 

  106. Rösch, N., M. Kotzian, H. Jörg, H. Schröder, B. Rager und S. Metev, On Visible Transients in Gas Phase UV Photolysis of Transition Metal Compounds: Experimental and Theoretical Results for Ni(CO)4 J.Amer.Chem.Soc. 108 (1986) 4238–4239

    Google Scholar 

  107. Kräuter, W., D. Bäuerle und F. Fimberger, Laser Induced Chemical Vapor Deposition of Ni by Decomposition of Ni(CO)4 Appl.Phys. A 31 (1983) 13–18

    Google Scholar 

  108. Petzoldt, F., K. Piglmayer, W. Kräuter und D. Bäuerle, Lateral Growth Rates in Laser CVD of Microstructures, Appl.Phys. A 35 (1984) 155–159

    Google Scholar 

  109. Allen, S.D., R.Y.Jan, R.H. Edwards, S.M. Mazuk und S.D. Vernon, Optical and Thermal Effects in Laser Chemical Vapor Deposition, Proc.Soc.PhotoOpt.Instr.Eng. (SPIE) 459 (1984) 42–48

    Google Scholar 

  110. Allen, S.D., Laser chemical vapor deposition: A technique for selective area deposition, J.Appl.Phys. 52 (1981) 6501–6505

    Google Scholar 

  111. Brueck, S.J.R. and D.J. Ehrlich, Stimulated Surface-Plasma-Wave Scattering and Growth of a Periodic Structure in Laser-Photodeposited Metal Films, Phys.Rev.Lett. 48 (1982) 1678–1681

    Google Scholar 

  112. Du, Y.C., U. Kempfer, K. Piglmayer, D. Bäuerle und U.M. Titulaer, New Types of Periodic Structures in Laser-Induced Chemical Vapor Deposition, Appl.Phys. A 39 (1986) 167–171

    Google Scholar 

  113. Preuß, S. und H. Stafast, CO2 Laser CVD of Copper Lines with Twofold Periodic Structures, Appl.Phys. A 54 (1992) 152–157

    Google Scholar 

  114. Bezuk, S.J., R.J. Baseman, C. Kryzak, K. Warner und G. Thomes, Pyrolytic Laser Direct Writing of Nickel over Polyimides, Mat.Res.Soc.Symp.Proc. 75 (1987) 75–81

    Google Scholar 

  115. Wedler, G., Lehrbuch der Physikalischen Chemie, 3. Auflage, VCH, Weinheim 1987, S. 390

    Google Scholar 

  116. Kazmierzki, K.L., Analysis and Characterization of Thin Films: A Tutorial, Solar Cells 24 (1988) 387–418

    Google Scholar 

  117. Feldman, L.C. und J.M. Mayer, Fundamentals of Surface and Thin Film Analysis, North-Holland, New York 1986

    Google Scholar 

  118. Ertl, G. und J. Köppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim 1985

    Google Scholar 

  119. Campion, A., Raman Spectroscopy of Molecules Adsorbed on Solid Surfaces, Ann.Rev.Phys. Chem. 36 (1985) 549–572

    Google Scholar 

  120. Lin, M.C. and G. Ertl, Laser Probing of Molecules Desorbing and Scattering from Solid Surfaces, Ann.Rev.Phys.Chem. 37 (1986) 587–615

    Google Scholar 

  121. Ceyer, S.T., Dissociative Chemisorption: Dynamics and Mechanisms, Ann.Rev.Phys.Chem. 39 (1988) 479–510

    Google Scholar 

  122. Steinfeld, J.I., Reactions of Photogenerated Free Radicals at Surfaces of Electronic Materials, Chem.Rev. 89 (1989) 1291–1301

    Google Scholar 

  123. Oehr, C. and H. Suhr, Deposition of Silver Films by Plasma-Enhanced Chemical Vapor Deposition, Appl.Phys. A 49 (1989) 691–696

    Google Scholar 

  124. Hess, P., IR and UV Laser-Induced Chemical Vapor Deposition: Chemical Mechanism for a-Si:H and Cr(O,C) Film Formation, Spectrochim.Acta 46A (1990) 489–497

    Google Scholar 

  125. Deutsch, T.F. and D.D. Rathman, Comparison of Laser-Initiated and Thermal Chemical Vapor Deposition of Tungsten Films, Appl.Phys.Lett. 45 (1984) 623–625

    Google Scholar 

  126. Gottsleben, O., H.W. Roesky and M. Stuke, Two-Step Generation of Aluminum Microstructures on Laser Generated Pd Prenucleation Patterns Using Thermal CVD from (Trimethylamine)trihydroaluminum, Adv.Mater. 3 (1991) 201–202

    Google Scholar 

  127. Oprysko, M.M. and M.W. Beranek, Nucleation Effects in Visible-Laser Chemical Vapor Deposition, J.Vac.Sci.Technol. B5 (1987) 496–503

    Google Scholar 

  128. Doll, J.D. and A.F. Voter, Recent Developments in the Theory of Surface Diffusion, Ann.Rev.Phys.Chem. 38 (1987)413–443

    Google Scholar 

  129. Katsuhiko, M., Y. Yamada, T. Iwabuchi and T. Miyata, Tungsten-carbon multilayers for X-ray optics prepared by ArF excimer-laserinduced chemical vapor deposition, J.Appl.Phys. 68 (1990) 1361–1363

    Google Scholar 

  130. Solanki, R., W.H. Ritchie and G.J. Collins, Photodeposition of aluminum oxide and aluminum thin films, Appl.Phys.Lett. 43 (1983) 454–456

    Google Scholar 

  131. Chen, Q., J.S. Osinski and P.D. Dapkus, Quantum well lasers with active region grown by laser-assisted atomic layer epitaxy, Appl.Phys.Lett. 57 (1990) 1437–1439

    Google Scholar 

  132. Hopfe, V., A. Tehel, A. Baier and J. Scharsig, IR-laser CVD of TiB2, TiCx, and TiCxNy coatings on carbon fibres, Appl.Surf.Sci. 54 (1992) 78–83

    Google Scholar 

  133. Tsao, J.Y., R.A. Becker, D.J. Ehrlich and F.J. Leonberger, Photodeposition of Ti and application to direct writing of Ti:LiNbO3 waveguides, Appl.Phys.Lett. 42 (1983) 559–561

    Google Scholar 

  134. Lavoie, C., M. Meunier, R. Izquierdo, S. Boivin and P. Desjardins, Large Area Excimer Laser Induced Deposition of Titanium from Titanium Tetrachloride, Appl.Phys. A 53 (1991) 339–342

    Google Scholar 

  135. Katayama, H., T. Norimatsu, S. Nakai and C. Yamanaka, Hydrocarbon coating by laser-induced chemical vapor deposition onto microsphere target levitated by a viscous gas jet, J.Vac.Sci.Technol. A 8 (1990) 855–860

    Google Scholar 

  136. Sugimura, A., Y. Fukuda and M. Hanabusa, Selective area deposition of silicon-nitride and silicon-oxide by laser chemical vapor deposition and fabrication of microlenses, J.Appl.Phys. 62 (1987) 3222–3227 sowie Kubo, M. and M. Hanabusa Fabrication of Microlenses by Laser Chemical Vapor Deposition, Appl.Opt. 29 (1990) 2755–2759

    Google Scholar 

  137. Corning Glass Works, Tiny CCD Lenses, Photonics Spectra, November 1987, S. 34–35

    Google Scholar 

  138. Yamada, Y., K. Mutoh, T. Iwabuchi and T. Miyata, Laser-Beam-Scanning Chemical Vapor Deposition Technique for Controlling the Spatial Thickness Distribution of Thin Films, Jpn.J.Appl.Phys. 30 (1991) 1740–1741

    Google Scholar 

  139. Tanaka, T., T. Fukuda, Y. Nagasawa, Miyazaki and M. Hirose, Atomic layer growth of silicon by excimer laser induced cryogenic chemical vapor deposition, Appl.Phys.Lett. 56 (1990) 1445–1447

    Google Scholar 

  140. Horiike, Y., T. Tanaka, M. Nakano, S. Iseda, H. Sakane, A. Nagata, H. Shindo, S. Miyazaki and M. Hirose, Digital chemical vapor deposition and etching technologies for semiconductor processing, J.Vac.Sci.Technol. A 8 (1990) 1844–1850

    Google Scholar 

  141. Westberg, H. F. Ericson, J. Engquist, M. Boman and J.-O. Carlsson, Laser-Induced Chemical Vapour Deposition of TiSi2: Aspects of Deposition Process, Microstructure and Resistivity, Thin Solid Films 198 (1991) 279–292

    Google Scholar 

  142. Yamada, T., R. Iga and H. Sugiura, GaAs Corrugation pattern with submicron pitch grown by Ar ion laser-assisted metalorganic molecular beam epitaxy, Appl.Phys.Lett. 59 (1991) 958–960

    Google Scholar 

  143. Ehrlich, D.J. and J.Y. Tsao, UV laser photodeposition of patterned catalyst flms from adsorbate mixtures, Appl.Phys.Lett. 46 (1985) 198–200

    Google Scholar 

  144. Lehmann, O. and M. Stuke, Generation of Three-Dimensional Free-Standing Metal Micro-Objects by Laser Chemical Processing, Appl.Phys. A 53 (1991) 343–345

    Google Scholar 

  145. Ganz, J. and E. Köhler, Strukturierung von Oberflächen durch Laser-CVD, in “Dünnschichttechnologien ‘80”, Band I, VDI-Verlag GmbH, Düsseldorf 1990, S. 184–207

    Google Scholar 

  146. Goto, J., T. Yagi and H. Nagai, Synthesis of Diamond Films by Laser-Induced Chemical Vapor Deposition, Mat.Res.Soc.Symp.Proc. 129 (1989) 213–217

    Google Scholar 

  147. Hussien, S.A., A.A. Fahmy, N.A. El-Masry and S.M. Bedair, A criterion for the suppression of plastic deformation in laser-assisted chemical vapor deposition of GaAs, J.Appl.Phys. 67 (1990) 3853–3857

    Google Scholar 

  148. Auvert, G., D. Tonneau, Y. Guern und G. Pelous, A repair machine for VLSI using laser induced micro-chemistry, Proc.Soc.PhotoOpt.Instr. Eng. (SPIE) 1022 (1988) 58–64

    Google Scholar 

  149. Fa. Kammerer GmbH, Postfach 130120, D-Pforzheim-Huchenfeld, Firmenmitteilung Nr.8, März 1988/2

    Google Scholar 

  150. LABEL, Laser Applications Belgium, Site du Grand-Hornu, Sainte-Louise, B-7320 Boussu, Prospekt Juni 1990

    Google Scholar 

  151. Heck, S., Th. Kruck und Th. Sassen, MOCVD - Basis für neue Schichttechnologien, Magazin für Neue Werkstoffe 3/90, S. 9–11

    Google Scholar 

  152. Bagratashvili, V.N., A.F. Banishev, S.A. Gnedoy, V.I. Emelyanov, A.N. Jerikhin, K.S. Merzljakov, V.Ya. Panchenko und V.N. Seminogov, Formation of Periodic Ring Structures of Relief and Voids Under Laser Vapor Deposition of Metallic Films, Appl.Phys. A 52 (1991) 438–444

    Google Scholar 

  153. Ward, T.L., T.T. Kodas und R.L. Jackson, Kinetics of laser-photochemical deposition by gas-phase dissociation, J.Appl.Phys. 69 (1991) 1000–1007

    Google Scholar 

  154. Hiura, Y., Y. Morishige und S. Kishida, Laser chemical vapor deposition direct patterning of insulating film, J.Appl.Phys. 69 (1991) 1744–1747

    Google Scholar 

  155. Liu, H., J.C. Roberts, J. Ramdani und S.M. Bedair, Laser selective area epitaxy of GasAs metal-semiconductor-field-effect transistor, Appl.Phys.Lett. 58 (1991) 1659–1661

    Google Scholar 

  156. Flint, E.B., J. Messelhäuser und H. Suhr, Laser-Induced CVD of Rhodium, Appl.Phys. A 53 (1991) 430–436 sowie Messelhäuser, J., E.B. Flint und H. Suhr Direct Writing of Pure Rhodium Lines by Laser Induced Chemical Vapor Deposition, Adv.Mater. 4 (1992) 347–349

    Google Scholar 

  157. Henley, F.J., Early Detection and Repair of AMLCD Defects, Solid State Technology, April 1992, S. 65–68

    Google Scholar 

  158. Elders, J., Laser-Induced Chemical Vapor Deposition of Titanium Diboride, Dissertation, Universität Amsterdam 1992

    Google Scholar 

  159. Gross, M.E., K.P. Cheung, C.G. Fleming, J. Kovalchick und L.A. Heimbrook Metalorganic chemical vapor deposition of aluminum from trimethylamine alane using Cu and TiN nucleation activators, J.Vac.Sci.Technol. A 9 (1991) 57–64

    Google Scholar 

  160. Comita, P.B., Surface Modification with Lasers, Adv.Mater. 2 (1990) 82–90

    Google Scholar 

  161. Boman, M., H. Westberg, S. J.hansson und J.-A. Schweitz, Helical Microstructures Grown by Laser Assisted Chemical Vapor Deposition, in “Micro Electro Mechanical Systems”, Herausgeber W. Benecke und H.C. Petzold, IEEE Proceed., Travemünde, 4.-7. Februar 1992, S. 162–167

    Google Scholar 

  162. Roth, W. und K.W. Hoffmann, Laserinduzierte Erzeugung hochreiner siliziumorganischer Schichten aus der Gasphase (LCVD), Präsentation auf der Diskussionstagung “Photochemie” der GDCh, Aachen, 20. November 1991

    Google Scholar 

  163. Gottsleben, O. und M. Stuke, Selective amplification of self-resistively heated laser-direct-written tungsten lines, Appl.Phys.Lett. 52 (1988) 2230–2232

    Google Scholar 

  164. Houle, F.A., T.H. Baum und C.R. Moylan, Laser deposition of films from acetylacetonate complexes, Cambridge Stud.Mod.Opt. 7 (1989) 25–60

    Google Scholar 

  165. Kammerer GmbH, Strukturierung von Oberflächen durch Laser-CVD, in “Statusseminar 1988 Dünnschichttechnologien”, Herausgeber VDI-TZ, Düsseldorf, S. 23. 1–23. 7

    Google Scholar 

  166. Black, J.G., S.P. Doran, M. Rothschildt und D.J. Ehrlich, Low-temperature laser deposition of tungsten by silane-and disilane-assisted reactions, Appl.Phys.Lett. 56 (1990) 1072–1074

    Google Scholar 

  167. Kollia, Z., V. Zafiropulos, C. Fotakis und J.A.D. Stockdale, Laser induced clustering in thiophenol, J.Chem.Phys. 94 (1991) 2374–2375

    Google Scholar 

  168. Johansson, S., J.-A. Schweitz, H. Westberg und M. Boman, Microfabrication of three-dimensional boron structures by laser chemical processing, J.Appl.Phys. 72 (1992) 5956–5963

    Google Scholar 

  169. Eres, D., D.B. Geohegan, D.H. Lowndes und D.N. Mashbum, ArF Laser Photochemical Deposition of Amorphous Silicon from Disilane: Spectroscopic Studies and Comparison with Thermal CVD, Appl.Surf.Sci. 36 (1989) 70–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafast, H. (1993). Laserchemische Abscheidung von Festkörpern aus der Gasphase. In: Angewandte Laserchemie. Laser in Technik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51140-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51140-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51141-7

  • Online ISBN: 978-3-642-51140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics