Skip to main content

The Study of Molecular Electronic Structure on Vector and Attached Processors

Correlation Effects in Transition Metal Complexes

  • Conference paper
Supercomputer Simulations in Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 44))

Abstract

The purpose of this paper is to both review the impact and use in the UK of Vector and Attached Processors in the study of molecular electronic structure and to describe illustrative applications in the study of transition metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ’some Research Applications on the Cray-1 Computer at the Daresbury Laboratory 1979–1981’,-Daresbury Laboratory, 1982.

    Google Scholar 

  2. M.F. Guest and S. Wilson in Proc. American Chem. Soc. Meeting, Las Vegas, August 1980 (Wiley-Interscience, New York, 1981); 2b] V.R. Saunders and M.F. Guest, Comput. Phys. Commun. 26, 389 (1982).

    Google Scholar 

  3. V.R. Saunders and J.H. Lenthe, Molec. Phys. 48, 923 (1983).

    Article  CAS  Google Scholar 

  4. R. Shepard, R.A. Bair, R.A. Eades, A.F. Wagner, M.J. Davis, C.B. Harding and T.H. Dunning, Jr., Int. J. Quant. Chem. 17, (1983); R.A. Bair and T.H. Dunning, Jr., J. Comp. Chem. 5 44 (1984); 4b] ‘FPS-164 Matrix Multiplication Subroutine Guide’, R. Bair, Argonne National Lab. (1984).

    Google Scholar 

  5. R. Ahlrichs, H.J. Bohm, C. Ehrnardt, P. Scharf, H. Schiffer, H. Lischka and M. Schindler, 6th Seminar on Computational Methods in Quantum Chemistry 31, (1984). 5b] for recent applications in parallelism see the work of E. Clementi and co-workers, Department 48B, Kingston, NY; ‘Algorithms vs Architectures for Computational Chemistry’, H. Partridge and C. Bauschlicher, in ‘Austin Conference on Algorithms, Architectures and the Future of Scientific Computation’, Austin, 1985.

    Google Scholar 

  6. M. Dupuis, J. Rys and H.F. King, J. Chem. Phys. 65 111 (1976); H.F. King and M. Dupuis, J. Comput. Phys. 21, 144 (1976).

    Article  CAS  Google Scholar 

  7. L.E. McMurchie and E.R. Davidson, J. Comput. Phys. 26, 218 (1978).

    Article  CAS  Google Scholar 

  8. C.C.J. Roothan, Rev. Mod. Phys. 32, 179 (1960).

    Article  Google Scholar 

  9. M. Yoshimine, IBM Technical Report, RJ-555, San Jose, USA (1969).

    Google Scholar 

  10. P.E.M. Siegbahn, J. Chem. Phys. 72, 1647 (1980).

    Article  CAS  Google Scholar 

  11. H.-J. Werner and P.J. Knowles, J. Chem. Phys. 82 5053 (1985); 11b] P.J. Knowles and H.-J. Werner, Chem. Phys. Letts. 115, 259 (1985)

    Article  CAS  Google Scholar 

  12. V.R. Saunders, VAMP on the Cyber-205 (1985).

    Google Scholar 

  13. G.H.F. Diercksen, W.P. Kraemer and B.O. Roos, Theor. Chim. Acta (Berlin) 36, 249 (1975).

    Article  CAS  Google Scholar 

  14. B.O. Roos, P.R. Taylor and P.E.M. Siegbahn, Chem. Phys. 48, 157 (1980).

    Article  CAS  Google Scholar 

  15. P.E.M. Siegbahn, Chem. Phys. Letts. 109, 417 (1984); P.J. Knowles and N.C. Handy, Chem. Phys. Letts. 111, 315 (1984).

    Article  CAS  Google Scholar 

  16. B.H. Lengsfield III and B. Liu, J. Chem. Phys. 75, 478 (1981); B.H. Lengsfield III, J. Chem. Phys. 77, 4073 (1982); J. Olsen, D.L. Yaeger and P. Jorgensen, Adv. Chem. Phys. 54, 1 (1983).

    Article  CAS  Google Scholar 

  17. P. Pulay, Molec. Phys. 17, 197 (1969); 18, 473 (1970); 21, 329 (1971).

    Article  CAS  Google Scholar 

  18. M. Dupuis, D. Spangler and J. Wendolowski, NRCC Software Catalog, Vol. 1, Program No. QG01 (GAMESS), 1980; M.F. Guest and J. Kendrick, GAMESS User Manual, Daresbury Technical Memorandum (1985).

    Google Scholar 

  19. P. Pulay. J. Comp. Chem. 3, 556 (1982).

    Article  CAS  Google Scholar 

  20. H.B. Schlegel, J. Chem. Phys. 77, 3676 (1982).

    Article  CAS  Google Scholar 

  21. S. Bell and J.S. Crighton, J. Chem. Phys. 80, 2464 (1984).

    Article  CAS  Google Scholar 

  22. C.J. Cerjan and W.H. Miller, J. Chem. Phys. 75, 2800 (1981).

    Article  CAS  Google Scholar 

  23. I.H. Hillier, Pure and Appl. Chem. 51, 2183 (1979).

    Article  CAS  Google Scholar 

  24. W. von Niessen, L.S. Cederbaum, W.P. Kraemer, and G.H.F. Diercksen, J. Am. Chem. Soc. 98, 2066 (1978).

    Article  Google Scholar 

  25. W. von Niessen, W.P. Kraemer and L.S. Cederbaum, J. Elec. Spec. 8, 179 (1976); J. Schirmer, W. Domcke, L.S. Cederbaum and W. von Niessen, J. Phys. B11, 1901 (1978).

    Article  Google Scholar 

  26. W. von Niessen, L.S. Cederbaum, G.H.F. Diercksen, J. Chem. Phys. 67, 4124 (1977); and references cited therein.

    Article  Google Scholar 

  27. M.-M. Rohmer and A. Veillard, J. Chem. Soc. (Chem. Comm.) 250 1973.

    Google Scholar 

  28. M.-M. Rohmer, J. Demuynck and A. Veillard, Theor. Chim. Acta (Berl.) 36, 93 (1974).

    Article  CAS  Google Scholar 

  29. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

    Article  Google Scholar 

  30. T.H. Dunning, J. Chem. Phys. 53, 2823 (1970); 30b] T.H. Dunning and P.J. Hay, in ‘Modern Theoretical Chemistry’, ed. H.F. Schaefer, Plenum (NY) Vol. 4, p1 (1977).

    Article  CAS  Google Scholar 

  31. R. Roos, A. Veillard and G. Vinot, Theor. Chim. Acta (Berl.) 20, 1 (1971).

    Article  CAS  Google Scholar 

  32. P.J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  33. L.S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 (1977).

    Article  CAS  Google Scholar 

  34. L.S. Cederbaum, Theor. Chim. Acta (Berl.) 31, 239 (1973); J. Phys. B8, 290 (1975).

    Article  CAS  Google Scholar 

  35. J. Schirmer and L.S. Cederbaum, J. Phys. B11, 1889 (1978).

    Google Scholar 

  36. J. Schirmer, L.S. Cederbaum and O. Walter, Phys. Rev. 28, 1237 (1983).

    Article  CAS  Google Scholar 

  37. W. von Niessen, J. Schirmer and L.S. Cederbaum, Comp. Phys. Rep. 1, 57 (1984); and references cited therein.

    Article  Google Scholar 

  38. A. Veillard and J. Demuynck, in ‘Modern Theoretical Chemistry’, ed. H.F. Schaefer, Plenum (NY) Vol. 4, p 187 (1977).

    Google Scholar 

  39. C.D. Batich, J. Am. Chem. Soc. 98, 7585 (1976).

    Article  CAS  Google Scholar 

  40. M.C. Bohm, R. Gleiter and C.D. Batich, Helv. Chim. Acta. 63, 990 (1980).

    Article  Google Scholar 

  41. M.C. Bohm and R. Gleiter, Theor. Chim. Acta (Berl.) 57, 315 (1980).

    Article  Google Scholar 

  42. T.E. Taylor and M.B. Hall, Chem. Phys. Letts. 114, 338 (1985).

    Article  CAS  Google Scholar 

  43. W.A. Lathan, L.A. Curtiss, W.J. Hehre, J.B. Lisle and J.A. Pople, Prog. Phys. Org. Chem. 11, 175 (1974).

    Article  CAS  Google Scholar 

  44. J. Demuynck, A. Strich and A. Veillard, Nouv. J. Chim. 1, 217 (1977).

    CAS  Google Scholar 

  45. K. Faegri and J. Almlof, Chem. Phys. Letts 107, 121 (1984).

    Article  CAS  Google Scholar 

  46. H.P. Luthi, J.H. Ammeter, J. Almlof and K. Korsell, Chem. Phys. Letts. 69, 540 (1980).

    Article  Google Scholar 

  47. H.P. Luthi, J.H. Ammeter, J. Almlof and K. Faegri, J. Chem. Phys. 77, 2002 (1982).

    Article  Google Scholar 

  48. J. Almlof, K. Faegri, B.E.R. Schilling and H.P. Luthi, Chem. Phys. Letts. 106, 266 (1984).

    Article  CAS  Google Scholar 

  49. H.P. Luthi, P.E. Siegbahn and J. Almlof, J. Phys. Chem. 89, 2156 (1985).

    Article  Google Scholar 

  50. W.J. Pietro and W.J. Hehre, J. Comp. Chem. 4, 241 (1983).

    Article  CAS  Google Scholar 

  51. L. Seijo, Z. Barandiaran, M. Klobukowski and S. Huzinaga, Chem. Phys. Letts. 117, 151 (1985).

    Article  CAS  Google Scholar 

  52. D.M. Hood, R.M. Pitzer and H.F. Schaefer, J. Chem. Phys. 71, 705 (1979).

    Article  CAS  Google Scholar 

  53. A.K. Rappe, T.A. Smedley and W.A. Goddard, J. Phys. Chem. 85, 2607 (1981).

    Article  CAS  Google Scholar 

  54. R.F. Fenske and J.R. Jensen, J. Chem. Phys. 71, 3374 (1979).

    Article  CAS  Google Scholar 

  55. M.F. Guest, I. H. Hillier, A.A. MacDowell and M. Berry, Molec. Phys. 41, 519 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guest, M.F. (1986). The Study of Molecular Electronic Structure on Vector and Attached Processors. In: Dupuis, M. (eds) Supercomputer Simulations in Chemistry. Lecture Notes in Chemistry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51060-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51060-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17178-2

  • Online ISBN: 978-3-642-51060-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics