Emergent Behavior in Insect Societies: Global Oscillations, Chaos and Computation

  • R. V. Solé
  • O. Miramontes
  • B. C. Goodwin
Part of the Springer Series in Synergetics book series (SSSYN, volume 62)

Abstract

Insect societies are formed by a huge number of individuals in interaction. Ant behavior is simple and, apparently, predictable, but recent results suggest that low-dimensional chaotic dynamics would be implicated at the individual level dynamics. In this paper, we explore several recent experimental results concerning global properties of ant societies, with the individuals defined as chaotic automata

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wilson, E.O., (1972) The Insect Societies, Harvard U. Press.Google Scholar
  2. [2]
    Haken, H. and Stadler, M., eds. (1990) Synergetics of Cognition. Springer-Verlag (Berlin)Google Scholar
  3. [3]
    Kephart, J.O., Hogg, T. and Hubermann, B.A. (1990) Collective behavior of predictive agents. Physica D42, 48–65.ADSGoogle Scholar
  4. [4]
    Kiss, G. (1991) Autonomous agents, AI and Chaos theory. in: From animals to animats. The MIT Press (Cambridge, USA).Google Scholar
  5. [5]
    Amit, D.J. (1989): “Modelling Brain Function”. Cambridge University Press.Google Scholar
  6. [6]
    Gordon, D.M. (1989) Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204.CrossRefGoogle Scholar
  7. [7]
    Gordon, D.M., Goodwin, B.C. and Trainor, L.E.H. (1992) A Parallel Distributed Model of the Behavior of Ant Societies. J. Theor. Biol. 156, 293–307.CrossRefGoogle Scholar
  8. [8]
    Nicolis, G. and Prigogine, I. (1977) Selforganization in Nonequilibrium Systems. Wiley and Sons, New YorkGoogle Scholar
  9. [9]
    Chen, S.C. (1937): Social modification of the activity of ants in nest-building. Physiol. Zool. 10, 420.Google Scholar
  10. [10]
    Cole, B.J. (1991a) Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259CrossRefGoogle Scholar
  11. [11]
    Cole, B.J. (1991b) Is animal behavior chaotic? Evidence from the activity of ants. Proc. Royal Soc. Lond. B244, 253–259.ADSGoogle Scholar
  12. [12]
    Gordon, D.M. (1989b) Caste and change in social insects. In Oxford Surveys in Evolutionary Biology 6. (Harvey, P. and Partridge, L., eds.). Oxford U. Press.Google Scholar
  13. [13]
    Oster, G. and Wilson, E.O. (1978) Caste and Ecology in the Social Insects. Princeton U. Press.Google Scholar
  14. [14]
    Franks, N.R., Bryant, S., Griffiths, R. and Hemerik, L. (1990). Synchronization of the behavior within nests of the ant Leptothorax acervorum I. Bull. Math. Biol. 52, 597–612.MATHGoogle Scholar
  15. [15]
    Miramontes, O., Sole, R.V. and Goodwin, B.C. (1992) Collective Behavior in random- activated Cellular Automata, to appear in Physica D.Google Scholar
  16. [16]
    Mikhailov, A.S. (1990) Foundations of Synergetics I, Springer Series in Synergetics, Springer (Berlin).MATHCrossRefGoogle Scholar
  17. [17]
    Solé, R.V., Miramontes, O. and Goodwin, B.C. (1992) Oscillations and Chaos in Ant Societies. To appear in J. Theor. Biol.Google Scholar
  18. [18]
    Miramontes, O. (1992) Complexity and behaviour in Leptothorax ants. Mh D Dissertation.Google Scholar
  19. [19]
    Franks, N.R., Sendovafranks, A.B. (1990). Brood Sorting by ants: distributing the work load over the work surface. Behav. Ecol. Sociobiol. 30, 109–119.Google Scholar
  20. [20]
    Sole, R.V. and Vails, J. (1992) On structural stability and Chaos in Biological Systems. J Theor. Biol. 155, 87–102.CrossRefGoogle Scholar
  21. [21]
    Sole, R.V., Bascompte, J. and Vails, J. (1992) Nonequilibrium Dynamics in Lattice Ecosystems: Chaotic Stability and Dissipative Structures. Chaos 3, 387–397.ADSCrossRefGoogle Scholar
  22. [22]
    Conrad, M. (1986) in: Chaos (A.V. Holden, ed.); Manchester Univ. Press.Google Scholar
  23. [23]
    Deneubourg, J.L., Pasteels, J.M. and Verhaeghe, J.C. (1983) Probabilistic behavior in ants: a strategy of errors?. J. Theor. Biol. 105, 259–271.CrossRefGoogle Scholar
  24. [24]
    Deneubourg, J.L., Goss, S., Pasteels, J.M. and Duerinck, G. (1986) Random behavior, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D22, 176–186.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. V. Solé
    • 1
  • O. Miramontes
    • 2
  • B. C. Goodwin
    • 2
  1. 1.Complex Systems Research Group, Dept. de Fisica i Enginyeria NuclearUniversitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.Dept. of BiologyThe Open UniversityMilton KeynesEngland

Personalised recommendations