On the Shape of Trees: Tools to Describe Ramified Patterns

  • J. Vannimenus
Part of the Springer Proceedings in Physics book series (SPPHY, volume 32)

Abstract

“Trees”, i.e., loopless ramified patterns, appear everywhere — from botany to geology (river networks), from evolution (phylogeny) to physics — and it is no surprise that their mathematical description has been studied from many different viewpoints. Even within physics, such structures occur in completely unrelated situations, e.g., the Cayley tree which is used as a model to study phase transitions in high dimensions [1], the hierarchical structure of pure states in spin glasses [2], the “treeing” effects observed in the degradation of polyethylene [3] … My personal motivation comes from an interest in patterns observed during electric discharges [4], electrochemical deposition [5], some types of viscous flows [6], thin solid deposits [7] — one can give many more examples, and the problem of characterizing mathematically the “shape” of these trees arises naturally.

Keywords

Clay Polyethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Moraal: “Classical discrete spin models”. Springer Lecture Notes in Physics, Vol. 214 (Springer, Berlin 1984)MATHCrossRefGoogle Scholar
  2. 2.
    R. Rammal, G. Toulouse, M.A. Virasoro: Rev. Mod. Phys. 58, 765 (1986)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J.C. Filippini et al: “Water trees and electrical trees”, in the Proceedings of the Conference JICABLE-84, p. 87 (1984); H.R. Zeller: IEEE Trans. Elect. Ins. EI-22,115 (1987)Google Scholar
  4. 4.
    L. Niemeyer, L. Pietronero, H. Wiesmann: Phys.Rev.Lett. 52, 1033 (1984)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Y. Sawada, A. Dougherty, J.P. Gollub: Phys. Rev. Lett. 56, 1260 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    J. Nittmann, G. Daccord, H.E. Stanley: Nature 314, 141 (1985) H. Van Damme, F. Obrecht, P. Levitz, L. Gatineau, C. Laroche: Nature 320, 731 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    E. Ben Jacob, G. Deutscher, P. Garik, N. Goldenfeld, Y. Lareah: Phys.Rev.Lett. 57, 1903 (1986) B.X.Liu, L.J. Huang, K.Tao, C.H.Shang, H.D.Li: Phys.Rev.Lett. 59, 745 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Y.S. Abu Mostafa, D. Psaltis: Sci. Am. 256, 66 (1987)Google Scholar
  9. 9.
    M. Aono, T.L. Kunii: IEEE Comp. Graph, and Appl. 5, 10 (1984); P. Oppenheimer: Comp. Graphics 20, 55 (1986); J. Bloomental: ibid. 19, 305 (1985); A.R. Smith: ibid. 18, 1 (1984)CrossRefGoogle Scholar
  10. 10.
    P. de Reffye, C. Edelin, M. Jaeger, C. Cabart: “Simulation de l’architecture des arbres”, Colloque “L’Arbre”, Montpellier, Sept. 1985Google Scholar
  11. 11.
    X. G. Viennot: “Trees, Rivers, RNAs and many other Things”, to be published in “Mélanges offerts à M.P. Schutzenberger”, D. Perrin and A. Lascoux edsGoogle Scholar
  12. 12.
    J. Vannimenus, X.G. Viennot: “Combinatorial Analysis of Physical Ramified Patterns”, E.N.S. Paris preprint (1988)Google Scholar
  13. 13.
    B. Mandelbrot: “The Fractal Geometry of Nature” (Freeman, San Francisco, 1982)MATHGoogle Scholar
  14. 14.
    H. E. Stanley: in “On Growth and Form: Fractal and Non-fractal Patterns in Physics”. H.E. Stanley and N. Ostrowski eds (Martinus Nijhoff, Boston,1986)Google Scholar
  15. 15.
    J. Vannimenus: in “Physics of Finely Divided Matter”. N. Boccara and M. Daoud eds, Springer Proceed. Phys., Vol. 5 (Springer, Berlin, 1985)Google Scholar
  16. 16.
    T. Witten: in “Chance and Matter — Les Houches 1986”. J. Souletie, J. Vannimenus and R. Stora eds (North Holland, Amsterdam, 1987)Google Scholar
  17. 17.
    A. Coniglio: in “Magnetic Phase Transitions”, M. Ausloos and RJ. Elliott eds, Springer Series in Sol. State Sci., Vol. 48 (Springer, Berlin, 1983)Google Scholar
  18. 18.
    P. Meakin: in ref. 14; P. Meakin, H.E. Stanley: Phys. Rev. Lett. 51, 1457 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    T. Witten, Y. Kantor: Phys. Rev. B 30, 4093 (1984); S. Havlin, D. BenAvraham: Adv. Phys. 36, 695-798 (1987)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    D. Dhar, R. Ramaswany: Phys.Rev.Lett. 54, 1346 (1985)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    C. Bachas, B. Huberman: Phys. Rev. Lett. 57, 1965 (1986); J. Phys. A 20, 4995 (1987)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    P. Grassberger: in “Statphys 16”. H.E. Stanley ed. (North-Holland, Amsterdam, 1986)Google Scholar
  23. 23.
    R.E. Horton: Bull. Geol. Soc. America 56, 275 (1945)CrossRefGoogle Scholar
  24. 24.
    A. N. Strahler: Bull. Geol. Soc. America 63, 1117 (1952)CrossRefGoogle Scholar
  25. 25.
    R. Kemp: Acta Informatica 11, 363 (1979); P. Flajeolet, J.C. Raoult, J. Vuillemin: Theor. Comp. Sci. 9, 99 (1979)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    A. Meir, J. W. Moon: Congressus Numerantium 33, 25 (1980)Google Scholar
  27. 27.
    G. Eyrolles, J. Françon, X.G. Viennot: in “Proceedings of the 2nd Image Colloquium. Nice.1986 “. p.648 (CESTA, Paris, 1986)Google Scholar
  28. 28.
    G. Eyrolles: “Synthèse d’ Images Figuratives d’ Arbres par des Méthodes Combinatoires”, Thesis, University Bordeaux I, 1986 (unpublished)Google Scholar
  29. 29.
    J.G. Penaud: “Matrice de Ramification des Arbres Binaires”, preprint, University Bordeaux-1, and personal communicationGoogle Scholar
  30. 30.
    P. Molho, J. Gouzerh, J.C.S. Levy, J.L. Porteseil: J. Magn. Magn. Mat. 54-57, 857 (1986)Google Scholar
  31. 31.
    J. Serra: “Image Analysis and Mathematical Morphology” (Academic Press, 1982)Google Scholar
  32. 32.
    T. E. Creighton: “Proteins: Structure and Molecular Properties”, p. 231–234 (W.H. Freeman, NewYork, 1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Vannimenus
    • 1
    • 2
  1. 1.Laboratoire Louis Néel, CNRSGrenoble CedexFrance
  2. 2.Institut Laue-LangevinGrenoble CedexFrance

Personalised recommendations