Finite Element Representations for Thin Shell Instability Analysis

  • R. H. Gallagher
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The development of finite element calculational procedures for thin shell instability analysis has involved the definition of appropriate element representations (i.e. the geometric form of the element and the approximation of displacement and/or stress), constitutive expressions, and computational algorithms. Among these, the status of thin shell finite element representations remains unsettled. This paper therefore emphasizes recent developments in the basic aspects of thin shell finite element analysis and discusses one simplified approach in more detail. Formulative and computational procedures for elastic instability analysis are then summarized and numerical results are shown for the simplified shell element formulation.

Keywords

Expense Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gallagher, R. H.: The Finite Element Method in Shell Stability Analysis. Computers and Structures 3, 543–557 (1973).CrossRefGoogle Scholar
  2. 2.
    Harvey, J. W.; Kelsey, S.: Triangular Plate Bending Element with Enforced Compatibility. AIAA J. 9, No. 6, 1023–1026 (1971).CrossRefMATHGoogle Scholar
  3. 3.
    Thomas, G. R.; Gallagher, R. H.: A Triangular Thin Shell Finite Element: Linear Analysis. NASA CR 2482 (1975).Google Scholar
  4. 4.
    Thomas, G. R.; Gallagher, R. H.: A Triangular Thin Shell Finite Element: Nonlinear Analysis. NASA CR 2483 (1975).Google Scholar
  5. 5.
    Wilson, E. L. et al.: Incompatible Displacement Models. In: Numerical and Computer Methods in Structural Mechanics. New York: Academic Press 1973, pp. 43–57.Google Scholar
  6. 6.
    Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M.: Reduced Integration Technique in General Analysis of Plates and Shells. Int. J. for Num. Meth. Engrg. 3, 275–290 (1971).CrossRefMATHGoogle Scholar
  7. 7.
    Zienkiewicz, O. C.; Parekh, C.: Discussion of paper “Analysis of three-dimensional Thin-Walled Structures”. Proc. ASCE, J. of the Struct. Div., No. ST8, Aug. 1970, pp. 1838–184G.Google Scholar
  8. 8.
    Ashwell, D.; Sahir, A.: A New Cylindrical Shell Finite Element Based on Simple Independent Strain Functions. Int. J. Mech. Sci. 14,171–183 (1972).CrossRefMATHGoogle Scholar
  9. 9.
    Fonder, G.; Clough, R.: Explicit Addition of Rigid-Body Motions in Curved Finite Elements. AIAA J. 11, No. 3, 305–312 (1973).CrossRefGoogle Scholar
  10. 10.
    Morley, L. S. D.: Polynomial Stress States in First Approximation Theory of Circular Cylindrical Shells. Quart. J. Mech. and Applied Math. V. XXV, Part 1 (1972).MathSciNetGoogle Scholar
  11. 11.
    Morris, A. J.: A Deficiency in Current Finite Elements for Thin Shell Applications. Int. J. Solids Struct. 9, 331–346 (1973).CrossRefMATHGoogle Scholar
  12. 12.
    Morris, A. J.: A Summary of Appropriate Governing Equations and Func- tionals in the Finite Element Analysis of Thin Shells. Conf. in Finite Element Thin Shell Analysis. New York: J. Wiley (in Press).Google Scholar
  13. 13.
    Cowper, G. R.; Lindberg, G. M.; Olson, M.D.: Comparison of Two High- Precision Triangular Finite Elements for Arbitrary Deep Shells. Proc. of Third Air Force Conf. on Matrix Methods in Structural Mechanics. AFFDL TR-71–160, 277–304 (1971).Google Scholar
  14. 14.
    Kikuchi, F.; Ando, Y.: Some Finite Element Solutions for Plate Bending Problems by Simplified Hybrid Displacement Method. Nucl. Engrg. Des. 23, 155–173 (1972).CrossRefGoogle Scholar
  15. 15.
    Kikuchi, F.; Ando, Y.: Application of Simplified Hybrid Displacement Method to Plate and Shell Problems. Proc. of 2nd Int. Conf. on Struct. Mech. in Reactor Technology. Berlin, Sept. 1973, Vol. M, Paper M5/5.Google Scholar
  16. 16.
    Argyris, J. H.; Lochner, N.: On the Application of the SHEBA Shell Element. Comp. Methods in Applied Mechanics and Engrg. 1,317–347 (1972).CrossRefGoogle Scholar
  17. 17.
    Dawe, D.: Some Higher-Order Elements for Arches and Shells. Conf. in Finite Element Thin Shell Analysis. New York: J. Wiley (in Press).Google Scholar
  18. 18.
    Scordelis, A. C.; Lo, K. S.: Computer Analysis of Cylindrcal Shells. ACI J. 61, 539–561 (1964).Google Scholar
  19. 19.
    Forsberg, K.; Härtung, K.: An Evaluation of Finite Difference and Finite Element Techniques for Analysis of General Shells. Proc. lUTAM Symposium on High-Speed Computing of Elastic Structures. Tome 2, pp. 837–859.Google Scholar
  20. 20.
    Oden, J. T.; Akay, H. U.; Johnson, C. P.: Effect of Higher Order Terms in Certain Nonlinear Finite Element Models. AIAA J. 11,1589–1590 (1973).CrossRefMATHGoogle Scholar
  21. 21.
    Gallagher, R. H.: Finite Element Analysis of Geometrically Nonlinear Problems. In: Theory and Practice in Finite Element Structural Analysis. Y. Yamada and R. Gallagher, Eds., Univ. of Tokyo Press 1973, pp. 109–123.Google Scholar
  22. 22.
    Stricklin, J.; Haisler, W. E.: Survey of Solution Procedures for Nonlinear Static and Dynamic Analyses. Proc. of SAE Internat. Conf. on Vehicle Structural Mechanics. Detroit: Mich. Mar. 1974, pp. 1–17.CrossRefGoogle Scholar
  23. 23.
    Zienkiewicz, O. C.: Incremental Displacement in Nonlinear Analysis. Int. J. Num. Method in Engrg. 3, No. 4, 587–588 (1971).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gupta, K. K.: Recent Advances in Numerical Analysis of Structural Eigenvalues. In: Theory and Practice in Finite Element Structural Analysis. Y. Yamada and R. Gallagher, Eds. Univ. of Tokyo Press, 1973, pp. 249–272.Google Scholar
  25. 25.
    Wittrick, W. H.; Williams, F. W.: A General Algorithm for Computing Natural Frequencies of Elastic Structures. Quart. J. of Mech. and Applied Math. XXIV, 263–284 (1964).MathSciNetGoogle Scholar
  26. 26.
    Mau, S. T.; Gallagher, R. H.: A Finite Element Procedure for Nonlinear Prebuckling and Initial Postbuckling Analysis. NASA CR-1936, Jan. 1972.Google Scholar
  27. 27.
    Thompson, J. M.T.; Hunt, G. W.: General Theory of Elastic Stability. London: J. Wiley 1973.MATHGoogle Scholar
  28. 28.
    Batoz, J.; Dhatt, G.: Buckling of Deep Shells. Proc. 2nd Int. Conf. on Struct. Mech. in Reactor Technology. Berlin, Sept. 1973, Vol. M, Paper M5/7.Google Scholar
  29. 29.
    Leicester, R. H.: Finite Deformations of Shallow Shells. Proc. ASCE, J. of the Engrg. Mech. Div., 94, No. EM6, 1409–1421 (1968).Google Scholar
  30. 30.
    Dhatt, G.: Instability of Thin Shells by the Finite Element Method. IASS Symp for Folded Plates and Prismatic Structures. Vienna 1970.Google Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1976

Authors and Affiliations

  • R. H. Gallagher
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations