Skip to main content

Caminalcules and Didaktozoa: Imaginary Organisms as Test-Examples for Systematics

  • Conference paper
Information and Classification

Part of the book series: Studies in Classification, Data Analysis and Knowledge Organization ((STUDIES CLASS))

Abstract

There are several artificial data sets created for theoretical considerations or didactic purposes in systematics (sect.1). Most famous are the Caminalcules (Figs. 1–4). They have been used for three decades for taxonomic exercises (mainly in numerical taxonomy) and subjected to intensive analysis (sect.2). Their “phytogeny” (“true tree”) is claimed to be representative for real organisms. Hence it was argued that the taxonomic procedures proved to be successful for Caminalcules could be used for living organisms with success as well.

The present paper analyses the “evolution” of the Caminalcules from the viewpoint of a morphologist and evolutionary biologist and shows that the Caminalcules are not representative of real organisms in many respects (sect.3): the tree topology (monophyla vs. paraphyla etc.), the character states in the stem-species, the absence of any serious problem of homologizing, the low number of convergences, and esp. the high number of living fossils. In Fig.2, the phenetic approach (overall similarity) and the cladistic approach are contrasted in easily understandable form. The “Didaktozoa” (Figs.5–7) are introduced and discussed (sect.4). They are more “handier” than Caminalcules, having only 12 terminal taxa. Also, they were created by rules most biologists will agree upon, and some problems with convergences are included to simulate the situation systematists are frequently confronted with. By giving alternative trees (Fig.7 vs. Fig.6) it is demonstrated that ingroup-analysis alone is usually not sufficient, rather that additional information from ontogeny and outgroups should be incorporated. Although not directly involved with molecular systematics, this article may be of relevance to molecular systematists as well (sect.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ax, P. (1984), Das Phylogenetische System, Gustav Fischer, Stuttgart.

    Google Scholar 

  • Camin, J.H., and Sokal, R.R. (1965), A method for deducing branching sequences in phylogeny, Evolution 19, 311–326.

    Article  Google Scholar 

  • Dixon, D. (1981), After Man — A Zoology of the Future, Harrow House, London.

    Google Scholar 

  • Gorr, Th., Kleinschmidt, T., and Fricke, H. (1991), Close tetrapod relationships of the coelacanth Latimeria indicated by haemoglobin sequences, Nature 351, 394–397.

    Article  Google Scholar 

  • Gould, St.J. (1977), Ontogeny and Phylogeny, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Heijerman, Th. (1992), Adequacy of numerical taxonomic methods, Z. zool. Syst. Evolut.-forsch. 30, 1–20.

    Google Scholar 

  • Klob, W. (1981), Modellaufgaben zur Stammbaumentwicklung für Grund-und Leistungskurs Biologie, Praxis Naturwiss, Biol. 1981 (11), 346–349.

    Google Scholar 

  • Lorenzen, S., and Sieg, J.(1991), Phylip, Paup, and Hennig 86 — how reliable are computer parsimony programs used in systematics? Z. zool. Syst. Evolut.-forsch. 29, 466–472.

    Google Scholar 

  • McKenna, M.C. (1987), Molecular and morphological analysis of high-level mammalian interrelationships, in: C. Patterson (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge, 141–176.

    Google Scholar 

  • Mayr, E. (1982), The Growth of Biological Thought, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Moss, W. W. (1971), Taxonomic repeatability: an experimental approach, Syst. Zool. 20, 309–330.

    Article  Google Scholar 

  • Osche, G. (1982), Rekapitulationsentwicklung und ihre Bedeutung für die Phylogenetik-Wann gilt die “Biogenetische Grundregel”?, Verh. naturwiss. Ver. Hamburg (NF) 25, 5–31.

    Google Scholar 

  • Remane, A. (1952), Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik, Akad. Verlagsges. Geest & Portig, Leipzig.

    Google Scholar 

  • Riedl, R. (1975), Die Ordnung des Lebendigen, Paul Parey, Hamburg und Berlin.

    Google Scholar 

  • Sengbusch, P. von (1974), Einführung in die Allgemeine Biologie, Springer, Heidelberg. (3. Aufl. 1985)

    Google Scholar 

  • Sneath, P.H.A., and Sokal, R.R. (1973), Numerical Taxonomy, Freeman, San Francisco.

    Google Scholar 

  • Sokal, R.R. (1966), Numerical taxonomy, Sci. Amer. 215(6), 106–116.

    Article  Google Scholar 

  • Sokal, R.R. (1983), A phylogenetic analysis of the Caminalcules I.-IV., Syst. Zool. 32, 159–184, 185-201, 248-258, 259-275.

    Article  Google Scholar 

  • Sokal, R. R. (1984), Die Caminalcules als taxonomische Lehrmeister (Lessons from the Caminalcules), in: H.-H. Bock (Hrg.), Anwendungen der Klassifikation: Datenanalyse und numerische Klassifikation (= Studien zur Klassifikation 15), Indeks Verlag, Frankfurt, 15–31.

    Google Scholar 

  • Sokal, R.R., and Rohlf, F.J. (1980), An Experiment in Taxonomic Judgment, Syst. Bot. 5, 341–365.

    Article  Google Scholar 

  • Stümpke, H. (1961), Bau und Leben der Bhinogradentia, Gustav Fischer, Stuttgart.

    Google Scholar 

  • Wiley, E.O. (1981), Phylogenetics. The Theory and Practice of Phylogenetic Systematics, John Wiley, New York.

    Google Scholar 

  • Wirth, U. (1984a), Die Phylogenetische Systematik (Das Prinzip von Hennig), Mitt. dtsch. malakozool. Ges. 37, 6–35.

    Google Scholar 

  • Wirth, U. (1984b), Die Struktur der Metazoen-Spermien und ihre Bedeutung für die Phylogenetik, Verh. naturwiss. Ver. Hamburg (NF) 27, 295–362.

    Google Scholar 

  • Wirth, U. (1991), Cladistic Analysis of Sperm Characters, in: B. Baccetti (ed.), Comparative Spermatology 20 Years After (Serono Symposia 75), Raven Press, New York, 1025–1029.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Wirth, U. (1993). Caminalcules and Didaktozoa: Imaginary Organisms as Test-Examples for Systematics. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50974-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56736-3

  • Online ISBN: 978-3-642-50974-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics