Skip to main content

Turbulent Drag Reduction Versus Structure of Turbulence

  • Conference paper
Book cover Structure of Turbulence and Drag Reduction

Abstract

Turbulent drag reduction by whatever methods is generally not associated with reduction of turbulence intensity. It may not be necessary to suppress the turbulence or even its production but to let the flow remain turbulent somehow altering its structure in such a way as to reduce turbulent dissipation of energy and thereby the turbulent drag. In other words the question is not whether we stop or not the turbulence production but, rather whether we can influence this process in such a way that the resulting turbulence will be low dissipative or “disabled” (Narasimha and Sreenivasan1). Is it possible and if so how it can be done? Before answering this very difficult question, it is appropriate to ask another somewhat simpler question whether low dissipative turbulent structures do exist and what they are. An attempt is made in this paper to shed some light on this question. First a review of the few known examples of low dissipative turbulent flows is given. These include an important case of turbulent MHD-flow in the presence of an azimuthal magnetic field, in which the body-force is applied directly to the turbulence only and does not interact with the mean flow. This case is of special interest since it exhibits essentially laminar drag (i.e. approximately vanishing Reynolds stresses) but possesses high level of turbulence. Similar behaviour has been observed in other drag reducing situations, like dilute and heterogeneous polymer drag reduction and some others. Of particular importance are also situations with so called “negative (eddy) viscosity" in which Reynolds stresses are of opposite sign to the "normal” one. These kind of flows are known in astro- and geophysical contexts and are quite a rarity in laboratory observations.

“...most flows of practical interest involve turbulent boundary layers and an alternate approach is to permit the flow to remain turbulent but somehow to reduce the turbulent shear forces.”

Gaiy R Hough 1972, Viscous drag reduction, Progress in Astronautics and Aeronautics, 72, p. XV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Narasimha, R. and Sreenivasan, K.R., 1979. “Relaminarization of fluid flows”, Adv, Appl. MecL 19, 221–309.

    Article  Google Scholar 

  2. Hartmann, J. and Lazarus, F., 1937. Hg-Dynamics II, Det. kgL Dansk. Vidensk, Selsk., Mat.-fys. Medd., 15, No. 7.

    Google Scholar 

  3. Tsinober, A., 1989. “MHD — flow drag reduction”, to be published in ’’Viscous drag reduction’* volume, eds. Bushell, D.M. and Hefner, D.M., AIAA Prog. Astron. Acron. series.

    Google Scholar 

  4. Branover, G.G. and Gelfgat, Yu. M. and Tsinober, A., 1966. “Turbulent magne- tohydrodynamic flows in prismatic and cylindrical ducts”, Magnetohydrodynamics, 2, 3–21.

    MathSciNet  Google Scholar 

  5. Shercliff, J.A., 1953. “Steady motion of conducting fluids in pipes under transverse magnetic fields”, Froc.Cambr. Phil. Soc., 49, 136–144.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Branover, G.G., Vasil’ev, A.S. Tsinober and Shkerstene, A. Ya., 1968. “Distribution of flow velocities in a rectangular pipe situated with the long side of its cross section in the direction of a magnetic field”, Magnetohydrodynamics 4, 42–43.

    Google Scholar 

  7. Branover, G. G. Slyusarev, N.M. and Shcherbinin, E.V., 1970. “Measurements of velocity profiles and fluctuations in a two-dimensional channel with the long side of cross-section parallel to the transverse magnetic field”, Magnetohydrodynamics 6, 492–496.

    Google Scholar 

  8. Kit, E., Turuntaev, S.V. and Tsinober, A., 1970. “Investigation with conduction anemometer of the efl’ect of magnetic field on disturbances in the wake of a cylinder”, Magneto hydrodynamicSy 5, 331–335.

    Google Scholar 

  9. Kit, E. and Tsinober, A., 1971. “Possibility of creating and investigating two- dimensional turbulence in a strong magnetic field”, Magnetohydrodynamics 7, 312- 318.

    Google Scholar 

  10. Goto, K., 1960. “Stokes flow of an electrically conducting fluid in a uniform magnetic field”, J. Phys. Soc. Jap., 15, 696–705.

    Article  ADS  Google Scholar 

  11. Wooler, P.T., 1961. “Instability of flow between parallel planes with coplanar magnetic field”, Phys. Fluids 4, 24–27.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Platnieks, I.A., 1972. “Correlation study of the transformation of a field of turbulence velocity perturbation in a MHD duct”, 7th Riga Conf. MHD,1 p. 31 (in Russian).

    Google Scholar 

  13. Kolesnikov, Yu. and Tsinober, A., 1972. “An experimental study of two-dimensio- nal turbulence behind a grid”, Fluid Dynamics 9, 621–624.

    Article  ADS  Google Scholar 

  14. Reed, C.B. and Lykoudis, P.S., 1978. “The efl’ect of transverse magnetic field on shear turbulence”, J. Fluid Mech. 89, 147–171.

    Article  ADS  Google Scholar 

  15. Reed, C.B., 1976. “An investigation of shear turbulence in the presence of magnetic field”, Ph.D. Thesis Purdue University.

    Google Scholar 

  16. Sommeria, J., N’guyen Due, J.M. and Caperan, P., 1988. “Two-dimensional MHD turbulence", lUTAM Symposium on Liquid Metal MHD May 16–20, 1988, Riga, Latv. SSR. See also: N’guyen Due, J.M., Caperan, P. and Sommeria, J., 1988. "Experimental investigation of the two-dimensional inverse energy cascade”, Prog. Astr. Aeron. 112, 78–86.

    Google Scholar 

  17. Platnieks, I. and Freibergs, Ya. Zh., 1972. “Turbulence and some stability problems in flows with M-shaped velocity profiles”, Magnetohydrodynamics 10, 164–168.

    Google Scholar 

  18. Selyuto, S.F., 1984. “Effect of magnetic field on formation of turbulence structure behing arrays of different configurations”, Magneto hydrodynamicSj 20, 268–273.

    Google Scholar 

  19. White, A. and Hemmings, J.A.G., 1976. “Drag reduction by additives”. Review and bibliography, BHRA, Fluid engineering.

    Google Scholar 

  20. Bartels, P.V., Markus, H. and Smith, J.M., 1985. "The turbulent mixing of vis- coelastic fluids in pipeV in: The influence of polymer additives on velocity and temperature fields ed. B. Gampert, Springer, pp. 279–289.

    Google Scholar 

  21. Berman, N.S., 1985. “A qualitative understanding of drag reduction by polymers”, in: The influence of polymer additives on velocity and temperature fields, ed. B. Gampert, Springer, pp. 294–310.

    Google Scholar 

  22. Berman, N.S. and Tan, H., 1985. “Two-component laser Doppler velocimeter studies of submerged jets of dilute polymer solutions”, Aiche 31, 208–215.

    Article  Google Scholar 

  23. Maksimovich, C., 1985. “Turbulence structure of a developing duct flow with near wall injection of drag reducing polymers”, in: The influence of polymer additives on velocity and temperature fields ed. Gampert B., Springer, pp. 359–368.

    Chapter  Google Scholar 

  24. Gampert, B. (ed.) 1985. “Influence of polymer additives on velocity and temperature field”, Springer.

    Google Scholar 

  25. Bewersdorff, H.W. and Olendorf, D., 1988. “The behaviour of drag reducing cationic surfactant solutions”. Colloid Polym, Sci 266, 941–953.

    Article  Google Scholar 

  26. Luchik, T.S. and Tiederman, W.G., 1988. “Turbulence structure in low- concentration drag-reducting channel flows”, J.Fluid Mech 190, 241–263.

    Article  ADS  Google Scholar 

  27. Bewersdorff, H.W., 1984. “Effect of centrally injected polymer thread on turbulent properties in pipe flow”, in: Srd Int, Conf, Drag Reduction Bristol, ed. R.H.J. Sellin and R.H. Moses, B.4–1, see also Rheol, Acta 23 522–543.

    Google Scholar 

  28. Bewersdorff, H.W., 1985. “Heterogeneous drag reduction in turbulent pipe flow”, in: The infiuence of polymer additives on velocity and temperature fields, ed. B. Gampert, Springer, pp. 337–348.

    Chapter  Google Scholar 

  29. Usui, H., Maeguchi, K. and Sano, Y. 1988. “Drag reduction caused by injection of polymer thread into a turbulent pipe flow”, Phys, Fluids 31, pp. 2518–2523.

    Article  ADS  Google Scholar 

  30. Lumley, J.L. and Kubo, I., 1985. “Turbulent drag reduction by polymer additives: A survey” in: The influence of polymer additives on velocity and temperature fields, ed. Gampert, Springer, 3–21.

    Chapter  Google Scholar 

  31. Riediger, S., 1988. “The influence of drag reducing additives on the coherent structures in a face shear layer”, Jnd Turb Con/., Berlin, Aug. 30-Sept. 2,1988; see also Proc, 6th Symp, Turb, Shear Flows Toulouse 1987, pp. 14.5.1–14.5.2.

    Google Scholar 

  32. Hoyt, J.W. and Sellin, R.H., 1988. “Drag reduction by centrally injected polymer threads”, Rheol, Acta, 27, 518–522.

    Article  Google Scholar 

  33. McWilliams, J.C., 1983. “On the relevance of two-dimensional turbulence ot geophysical fluid motions”, J, Mech, Theor, AppL Numero Special, 83–97.

    Google Scholar 

  34. Monin, A.S. and Ozmidov, R.V., 1985. “Turbulence in the ocean”, Reidel.

    Google Scholar 

  35. Rhines, P., 1979. “Geostropic turbulence”, Ann, Rev, Fluid Mech 11, 401–441.

    Article  ADS  Google Scholar 

  36. Starr, V., 1968. “Physics of negative viscosity phenomena”, McGraw Hill.

    Google Scholar 

  37. Busse, F.H., 1983. “Generation of mean flows by thermal convection”, Physica 9D, 287–299.

    ADS  Google Scholar 

  38. Monin, A.S. and Seidov, D.G., 1983. “ On the generation of jet flow by negative viscosity”, Dokl, AN SSSR 268, 454–457.

    Google Scholar 

  39. Monin, A.S., 1987. “On the negative viscosity in global circulations”, Dokl. AN 555Ä.,293, 70–73.

    Google Scholar 

  40. Lesieur, M., 1987. “Turbulence in Fluids”, Martinus Nijhoff.

    Google Scholar 

  41. Kraichnan, R.H. and Montgomery, D., 1980. “Two-dimensional turbulence”. Rep, Prog. Phys 43, 547–619.

    Article  ADS  MathSciNet  Google Scholar 

  42. Two-dimensional turbulence, 1983. J, de Mec. Theor ci App/., Numero Special.

    Google Scholar 

  43. Lorenz, E.N., 1953. “The interaction between mean flow and random disturbances”, Tellus 5, 238–250.

    Article  ADS  MathSciNet  Google Scholar 

  44. Schwartz, W.H. and Cosart, W.P., 1961. “The two-dimensional turbulent wall-jet”, J. Fluid Mech 10, 481–495.

    Article  ADS  Google Scholar 

  45. Eskinazi, S. and Erian, F.F., 1969. “Energy reversal in turbulent flows”, Phys. Fluids 12, 1988–1998.

    Article  ADS  Google Scholar 

  46. Sreenivasan, K.R., Tavoularis, S. and Corrsin, S., 1982. "A test of gradient transport and its generlization; in: Turbulent shear flows 3, (ed. Bradbury L.O.S. et al). Springer, pp. 96–112.

    Google Scholar 

  47. Hinze, J.O., 1970. “Turbulent flow regions with shear stress and mean velocity gradient of opposite sign”, Appl. Sei, Res., 22, 163–175.

    MATH  Google Scholar 

  48. Wilson, D.J., 1974. “Turbulent transport of mean kinetic energy in countergradient shear stress regions”, Phys. Fluids 17, 674–675.

    Article  ADS  Google Scholar 

  49. So, R.M. and Mellor, G.L., 1982. “An experimental investigation of turbulent boundary layers along curved surfaces”, NASA CR-1940.

    Google Scholar 

  50. So, R.M. and Mellor, G.L., 1973. “Experiment on convex curvature efl’ects in turbulent boundary layers”, J. Fluid Mech 60, 43–62.

    Article  ADS  Google Scholar 

  51. Gibson, M.M., 1985. “Effects of streamwise curvature on turbulence”, in: Frontiers of Fluid Dynamics, eds. Davis S.H. and Lumley, J.L., Springer, 184–198.

    Chapter  Google Scholar 

  52. Oster, D., 1980. “The effect of an active disturbance on the development of the two-dimensional turbulent mixing layer”, Ph.D. Thesis, Tel Aviv University.

    Google Scholar 

  53. Oster, D. and Wygnanski, L, 1982. “The forced mixing layer between parallel streams”, J. Fluid Mech 123, 91–130.

    Article  ADS  Google Scholar 

  54. Weisbrot, I., 1984. “A highly excited turbulent mixing layer”, Ph.D. Thesis, Tel Aviv University.

    Google Scholar 

  55. Weisbrot, I. and Wygnanski, I., 1988. “On coherent structures in a highly excited mixing layer”, J. Fluid Mech 195, 137–159.

    Article  ADS  Google Scholar 

  56. Browand, F.K. and Ho, C.M., 1983. “The mixing layer: An example of quasi-two- dimensional turbulence”, J. Mec. Theor. Appl Numero special, 99–120.

    Google Scholar 

  57. Hilberg, D. and Fiedler, H.E., 1988. “The turbulent shear layer in a narrow slit”, 2nd Europ. Turb. Conf Berlin, Aug. 30-Sept. 2, 1988.

    Google Scholar 

  58. Giger, M., Dracos, T. and Jirka, G., 1989. “Plane turbulent jets in bounded fluid layer", submitted to J. Fluid Mech; Giger, M. 1987. "Der obene Freistrahl in flachem Wasser”, Dissertation ETH, Zurich.

    Google Scholar 

  59. Krause, F. and Rüdinger, G., 1974. “On the Reynolds stresses in mean field hydrodynamics. I. Incompressible homogeneous isotropic turbulence. H. Two- dimensional turbulence and the problem of negative eddy viscosity”,Astron. Nachr 295, 93–99 and 185–193.

    Google Scholar 

  60. Sivashinsky, G.I., 1983. “Negative eddy viscosity effect in large-scale turbulence. Long-wave instability of a periodic system of eddies”, Phys. Lett 95A, 152–154.

    ADS  Google Scholar 

  61. Sivashinsky, G.I., 1985. “Weak turbulence in periodic flows”, Physica 17D, 243- 255.

    ADS  MathSciNet  Google Scholar 

  62. Sivashinsky, G.I. and Yakhot, V., 1985. “Negative viscosisty effect in large-scale flows”, Phys. Fluids 28, 1040–1042.

    Article  ADS  MATH  Google Scholar 

  63. Bayly, B.J. and Yakhot, V., 1986. “Positive and negative effective viscosity phenomena in isotropic and anisotropic Beltrami flows”,Phys, Rev, A34, 381–391.

    ADS  Google Scholar 

  64. Frisch, U., She, Z.S. and Sulem, P.L., 1987. “Large scale flow driven by the anisotropic kinetic alpha effect”, Physica 28D, 382–392.

    ADS  Google Scholar 

  65. Shtilman, L. and Sivashinsky, G., 1986. “Negative viscosity effect in three- dimensional flows”, J, Physique 47, 1137–1140.

    Article  Google Scholar 

  66. Sulem, P.L., She, Z.E., Scholl, H. and Frisch, U., 1988. “Generation of large-scale structures in three-dimensional flows lacking parity invariance”, J, Fluid Mech 205, 341–358.

    Article  ADS  MathSciNet  Google Scholar 

  67. Yakhot, V. and Pelz, R., 1987. “Large-scale structure generation by anisotropic small-scale flows”, Phys, Fluids 30, 1272–1277.

    Article  ADS  Google Scholar 

  68. Yakhot, V. and Sivashinsky, G., 1986. “Negative viscosity phenomena in three- dimensional flows”, Phys, Rev A35, 815–820.

    ADS  Google Scholar 

  69. Lesieur, M., Staquet, C., Le Roy, P. and Comte, P., 1988. “The mixing layer and its coherence from the point of view of two-dimensional turbulence”, J, Fluid Mech bf 192, 511–534.

    Article  ADS  MathSciNet  Google Scholar 

  70. Liu, J.T.C., 1988. “Contributions to the understanding of large scale coherent structures in developing free turbulent shear flows”, Adv, Appl, Mech 26, 184- 309.

    Google Scholar 

  71. Liu, J.T.C., 1989. “Coherent structures in transitional and turbulent free shear flows”, Ann, Rev, Fluid Mech 21, 285–315.

    Article  ADS  Google Scholar 

  72. Moffatt, HJ.K., 1985, 1986a. “Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology”. Part 1. Fundamentals, J. Fluid Mech 159, 359- 378; Part 2. Stability considerations, J. Fluid Mech 166, 359–378;

    Google Scholar 

  73. Moffatt, H.K., 1986b. "On the existence of localized rotational disturbances which propagate without change of structure in an inviscid fluidf J, Fluid Mech 173, 289–302.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  74. Moffatt, H.K., 1989. "Fixed points of turbulent dynamical systems and suppression of nonlinearity Whither turbulence workshop, Cornell University, March 22–24, 1989.

    Google Scholar 

  75. Kraichnan, R.H. and Panda, R. 1988. “Depression of nonlinearity in decaying isotropic turbulence”, Phys, Fluids 31, 2395–2397.

    Article  ADS  MATH  Google Scholar 

  76. Shtilman, L. and Polifke, W. 1989. “On the mechanim of the reduction of nonlinearity in incompressible turbulent flows”, Phys, Fluids, Al, 778–780.

    Google Scholar 

  77. Tsinober, A., 1989. "On one property of Lamb vector in isotropic turbulent flow’,’ to be published.

    Google Scholar 

  78. Andre, J.C. and Lesieur, M. 1977. “Influence of helicity on the evolution of isotropic turbulence at high Reynolds number”. J, Fluid Mech 81, 187–297.

    Article  ADS  MATH  Google Scholar 

  79. Kraichnan, R. 1973. “Helical turbulence and absolute equilibrium”, J.Fluid Mech 59, 745–752.

    Article  ADS  MATH  Google Scholar 

  80. Polifke, W. and Shtilman, L. 1989. "On initial conditions and time stepping schemes in numerical simulations of decaying turbulence’,’ Phys, Fluids (in press).

    Google Scholar 

  81. Pelz, R.B., Yakhot, V., Orstag, S.A., Shtilman, L. and Levich, E., 1985. “Velocity- vorticity patterns in turbulent flows”, Phys. Rev, Lett 54, 2505–8.

    Article  ADS  Google Scholar 

  82. Rogers, M. and Moin, P. 1987. “Helicity fluctuations in incompressible turbulent flows”, Phys, Fluids 30, 2662–2671.

    Article  ADS  Google Scholar 

  83. Hussain, A.K.M.F. 1986. “Coherent structures and turbulence”,J, Fluid Mech 173, 303–356.

    Article  ADS  Google Scholar 

  84. Melander, M.V. and Hussain F. 1988. "Cut and-connect of two parallel vortex tubes,Proc. Summer Progr: Studying turbulence using numerical simulation databases H. Rep. CTR-S88, pp. 257–286.

    Google Scholar 

  85. Hussain, F., Moser, R., Colonis, T., Moin, P. and Rogers, M.M. 1988. “Dynamics of coherent structures in a plane mixing layer”, Proc, Summer Progr,: Studying Turbulence using numerical simulation databases H. Rep.-CTR-S88, pp. 49–55.

    Google Scholar 

  86. Cambon, C. and Jacquin, L. 1989. “Spectral approach to non-isotropic turbulence subjected to rotation”, J, Fluid, Mech 202, 295–317.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Jacquin, L., Leuchter, O. and Geflroy, P., 1987. “Experimental study of homogeneous turbulence in the presence of rotation”, in: Proc. Sixth Symposium on Turbulent Shear Flows Toulouse, 1987, pp. 3.5.1–3.5.6;

    Google Scholar 

  88. Jacquin, L., Geffroy, P. and Leuchter, O. 1988. “Experimental study of rotation effects on grid generated turbulence with different mesh sizes”. Second European Turbulence Con/ Berlin, Aug. 30-Sept 2, 1988.

    Google Scholar 

  89. Teissedre, C. and Dang, K., 1987. “Anisotropic behaviour of rotating homogeneous turbulence by numerical simulation”, AIAA paper 87–1250, AIAA Fluid and Plasma Dynamics Conference Honolulu, Hawaii.

    Google Scholar 

  90. Hopflnger, E.J., 1989. “Turbulence and vortices in rotating fluids”, in:Theoretical and Applied Mechanics Proc. XVH Int. Congr. lUTAM, eds. Germain, P. et al, pp. 117–138.

    Google Scholar 

  91. Tritton, D.J., 1978. “Turbulence in rotating fluids”, in: Rotating Fluids in Geophysics, eds. Roberts, P.H. and Soward, A.M., pp. 105–138.

    Google Scholar 

  92. Tritton, D.J., 1985. “Experiments on turbulence in geophysical fluid dynamics. I. Turbulence in rotating fluids”, in: Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, Ed. Ghil, A., R. Benzi and Parisi, G., pp. 172–192, North-Holland.

    Google Scholar 

  93. Maxworthy, T. Caperan, Ph. and Spedding, G.R., 1987. “Two-dimensional turbulence and vortex dynamics in a stratified fluid”, Proc, 2nd Int, Symp, Strat, Fluids, 2, Pasadena, Feb. 3–5.

    Google Scholar 

  94. Herring, J.R., McWilliams, J.C., Metais, O. and Gamage, N., 1987. “Vortical turbulence in a stratified fluid”, Proc, 2nd Int. Symp, Strat, Fluids, 2, Pasadena, Feb. 3–5.

    Google Scholar 

  95. Hopfinger, E.J., 1987. “Turbulence in stratified fluids: A review”, J, Geophys, Res 92C, 5287–5303.

    Article  ADS  Google Scholar 

  96. Thorpe, S.A., 1987. “Transitional phenomena and the development of turbulence in stratified fluids: A review”,J, Geophys. Res 92C, 5231–5248.

    Article  Google Scholar 

  97. Hidenaru, M., Takao, L and Akiyoshi, L, 1988. “An experimental study of axisym- metric turbulence". 1st report: "The generation and decay process of a cigjur-shaped axisymmetric turbulence field”, Trans, Jap, Soc, Mech, Engn B. 54, (No. 505), 2408–2415.

    Google Scholar 

  98. Wilkinson, S.P., Anders, J.B., Lazos, B.S. and Bushnell, D.M., 1987. In: Turbulent drag reduction by passive means", Proc. Int. Conf 1, Roy. Aeronaut. Soc pp. 1–32.

    Google Scholar 

  99. Djenidi, L., Anselmet, F. and Fulachier, L., 1987. “Influence of a riblet wall on boundary layers, in: Turbulent drag reduction by passive means”, Proc. Int. Conf. y II, Roy. Aeronaut. Soc 310–329.

    Google Scholar 

  100. Djenidi, L., Liandrat, J., Anselmet, F. and Fulachier, L., 1988. “About the mechanism involved in a turbulent boundary layer over riblets”, 2nd Eur op. Turb. Conf Berline, Aug. 30-Sept 2, 1988.

    Google Scholar 

  101. Moffatt, H.K., 1969. “The degree of knottedness of tangled vortex lines”, J. Fluid Mech 35, pp. 117–129.

    Article  ADS  MATH  Google Scholar 

  102. Clauser, F.H., 1956. “The turbulent boundary layer”. Adv. Appl. Mech 4, 1–51.

    Article  Google Scholar 

  103. Prabhu, A., Vasudevah, B., Kailasnath, P., Kulkarni, R.S. and Narasimha, R., 1987. “Blade manipulators in channel flow”, in: Turbulence Management and Relaminartzation, ed. Liepmann, H.W. and Narasimha, R., Springer, 97–103.

    Google Scholar 

  104. Savill, A.M. and Mumford, J.C., 1988. "Munipulation of turbulent boundary layers by outer layer devices: Skin friction and flow visualization results ’V. Fluid Mech 91, 389–418.

    Article  ADS  Google Scholar 

  105. Sahlin, A., Johanson, A.V. and Alfredson, P.IL, 1988. “The possibility of drag reduction by outer layer manipulators in turbulent boundary layers”, Phys. Fluids 31, 2814–2820.

    Article  ADS  Google Scholar 

  106. Bushell, D.M. and McGinley, C.B., 1989. “Turbulence control in wall flows”, Ann. Rev. Fluid Mech 21, 1–20.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsinober, A. (1990). Turbulent Drag Reduction Versus Structure of Turbulence. In: Gyr, A. (eds) Structure of Turbulence and Drag Reduction. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50971-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50971-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50973-5

  • Online ISBN: 978-3-642-50971-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics