Drag Reduction in Surfactant Solutions

  • Hans-Werner Bewersdorff
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Drag reducing surfactant solutions are characterized by the presence of rod-like micelles which are formed by single surfactant molecules above a characteristic concentration. This critical micelle concentration strongly depends on the temperature and the electrolyte concentration. Shear viscosity measurements of drag reducing surfactant solutions show that at shear rates above a critical value the viscosity suddenly increases due to the formation of a shear-induced state (SIS) in which the micelles coalescence to larger structures and are completely aligned in flow direction. The turbulent friction behaviour of these surfactant solutions is characterized by a critical wall-shear stress. The observed loss of drag reduction beyond this critical wall-shear stress is reversible.

Small-angle neutron scattering (SANS) experiments demonstrate that the alignment of the rod-like micelles in flow direction correlates with drag reduction. At low Reynolds numbers in the turbulent flow regime the dimensionless velocity profiles are very similar to those observed in dilute polymer solutions, whereas at maximum drag reduction conditions the shape of the profiles is similar to a laminar profile. The axial turbulence intensity is increased whereas the transverse turbulence intensity and the Reynolds shear stresses are strongly damped. An attempt is made to explain theses changes by an increased effective viscosity.


Wall Shear Stress Friction Factor Surfactant Solution Drag Reduction Reynolds Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mysels KJ (1949) US Patent 2 492 173Google Scholar
  2. [2]
    Zakin JL, Lui HL (1983) Chem Eng Commun 23:77CrossRefGoogle Scholar
  3. [3]
    Ohlendorf D, Interthal W, Hoffmann H (1986) Rheol Acta 26:468CrossRefGoogle Scholar
  4. [4]
    Myska J, Slanec K (1980) Acta Polytechnica 11:57Google Scholar
  5. [5]
    Ohlendorf D, Interthal W, Hoffmann H (1984) Intern Congr Rheology, Mexico, 2:41, Elsevier Sei Publ, AmsterdamGoogle Scholar
  6. [6]
    Savins JG (1967) Rheol Acta 6:323CrossRefGoogle Scholar
  7. [7]
    Elson TP, Garside J (1983) J Non-Newtonian Fluid Mech 12:121CrossRefGoogle Scholar
  8. [8]
    Wells CS (1969) in: White A (ed) Viscous Drag Reduction, 297, Plenum Press, New YorkGoogle Scholar
  9. [9]
    Bewersdorff HW, Ohlendorf D (1985) Proc 5 symp on Turbulent Shear Flows, Ithaca, 9:41.Google Scholar
  10. [10]
    Bewersdorff HW, Ohlendorf D (1988) Colloid & Polymer Sei 266:941CrossRefGoogle Scholar
  11. [11]
    Mukerjee P, Mysels KJ (1971) Critical micelle concentration of aqueous solutions, NRRDS-BBS, No. 36, USAGoogle Scholar
  12. [12]
    Gravsholt S (1976) J Colloid Interface Sei 57:575CrossRefGoogle Scholar
  13. [13]
    Hoffmann H, Platz G, Rehage H, Schorr W, Ulbricht W (1980) Ber Bunsenges Phys Chem 85:2255Google Scholar
  14. [14]
    Rehage H, Wunderlich I, Hoffmann H (1986) Progr Colloid Polym Sei 72:51CrossRefGoogle Scholar
  15. [15]
    Löbl M, Thum H, Hoffmann H (1984) Ber Bunsenges Phys Chem 88:1102Google Scholar
  16. [16]
    Bewersdorff HW, Dohmann J, Langowski J, Lindner P, Maack A, Oberthür R, Thiel H (1989) Physica B 156&157:508CrossRefGoogle Scholar
  17. [17]
    Wunderlich AM, James DF (1987) Rheol Acta 26:522CrossRefGoogle Scholar
  18. [18]
    Vissmann K, Bewersdorff HW (1989) Intern Conf Drag Reduction, Davos, SwitzerlandGoogle Scholar
  19. [19]
    Bewersdorff HW, Frings B, Lindner P, Oberthür RC (1986) Rheol Acta 25:642CrossRefGoogle Scholar
  20. [20]
    Virk PS (1975) AIChE 0’ 21:625CrossRefGoogle Scholar
  21. [21]
    Bark FH, Tinoco H (1978) J Fluid Mech 87:321ADSMATHCrossRefGoogle Scholar
  22. [22]
    Schlichting K (1960) Boundary Layer Theory, McGraw-Hill, New YorkMATHGoogle Scholar
  23. [23]
    Povkh IL, Stupin AV, Aslanov PV (1988) Fluid Mech-Sov Res 17:65Google Scholar
  24. [24]
    Povkh IL, Stupin AB, Maksjutenko SN, Aslanov PV, Simonenko AP (1980) in: Mekhanika turbulentnykh potokov, Moscow, pp. 44–69Google Scholar
  25. [25]
    Aslanov PV, Maksjutenko SN, Povkh IL, Simonenko AP, Stupin AB (1980) Izv Akad Nauk SSR, Mekh Zhidk Gaza, pp. 36–43Google Scholar
  26. [26]
    Povkh IL, Stupin AB, Maksjutenko SN, Aslanov PV, Roshchin EA, Tur AN, (1975) Inzh Fiz ZH 29:522Google Scholar
  27. [27]
    Bewersdorff HW (1984) Rheol Acta 23:522CrossRefGoogle Scholar
  28. [28]
    Berman NS (1986) Chem Eng Commun 42:37CrossRefGoogle Scholar
  29. [29]
    Berman NS (1978) Ann Rev Fluid Mech 10:47ADSCrossRefGoogle Scholar
  30. [30]
    Schümmer P,” Thielen W (1981) Chem Eng Commun 4:593CrossRefGoogle Scholar
  31. [31]
    Giesekus H (1981) Structure of turbulence in drag reducing fluids, Lecture Series 1981–86, Von Kórmén-Institute for Fluid Dynamics, Rhode-Saint-Genèse, BelgiumGoogle Scholar
  32. [32]
    Bewersdorff HW, Berman NS (1988) Rheol Acta 27:130MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Hans-Werner Bewersdorff
    • 1
  1. 1.Department of Chemical EngineeringUniversity of DortmundF.R. Germany

Personalised recommendations