Advertisement

The Effect of Dilute Polymer Solutions on Viscous Drag and Turbulence Structure

  • William G. Tiederman
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

All recent results confirm that the major differences between dilute polymer and Newtonian flows occur in an expanded buffer region near the wall. The wall- normal velocity fluctuations decrease and the principal axes for the Reynolds shear stress rotate toward the streamwise and wall-normal directions. Lower threshold uv events in quadrants 2 and 4 are damped while higher threshold uv events are not damped. The mean period of the burst cycle increases as drag reduction increases in the same way that streak spacing increases. While the wall-layer structures are modified in dilute polymer flows, they still contain all of the features of the Newtonian wall-layer structures.

Keywords

Reynolds Stress Drag Reduction Streamwise Velocity Reynolds Shear Stress Deborah Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mysels, K.J.: Early Experiences with Viscous Drag Reduction. Chemical Engineering Progress Symposium Series 67, 111 (1971) 45–49.Google Scholar
  2. 2.
    Toms, B.A.: On the Early Experiments on Drag Reduction by Polymers. Phys. Fluids 20, 10, Pt. II (1977) S53-S55.CrossRefGoogle Scholar
  3. 3.
    Oldroyd, J.G.: A Suggested Method of Detecting Wall Efl’ects in Turbulent Flow Through Pipes. Proc. Intl. Congr. on Rheol., II, North Holland, Amsterdam (1949) 130–134.Google Scholar
  4. 4.
    Mysels, K.J.: Flow of Thickened Fluids. U.S. Patent 2, 492, 173 (1949).Google Scholar
  5. 5.
    Toms, B.A.: Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers Proc. Intl. Congr. on Rheol., II, North Holland, Amsterdam (1949) 135–141.Google Scholar
  6. 6.
    Savins, J.G.: Preface for Drag Reduction Chemical Engineering Progress Symposium Series 67, 111 (1971) v-vi.Google Scholar
  7. 7.
    Lumley, J.L.: Drag Reduction by Additives. Ann. Rev. Fluid Mech. 1 (1969) 367–384.ADSCrossRefGoogle Scholar
  8. 8.
    Hoyt, J.W.: The Effect of Additives on Fluid Friction. ASME J. Basic Engrg. 94D (1972) 258–285.CrossRefGoogle Scholar
  9. 9.
    Virk, P.S.: Drag Reduction Fundamentals. AIChE J. 21 (1975) 625–656.CrossRefGoogle Scholar
  10. 10.
    Kline, S.J.: Quasi-Coherent Structures in the Turbulent Boundary Layer: Part 1. Status Report on a Community-Wide Summary of the Data. In Near Wall Turbulence ed. by S.J. Kline and N.H. Afgan, Hemisphere, New York, 1989 (in press).Google Scholar
  11. 11.
    Kim, J., Moin P. and Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1987) 133–166.ADSMATHCrossRefGoogle Scholar
  12. 12.
    Spalart, P.R.: Direct numerical simulation of a turbulent boundary layer up to Re0 = 1410. J. Fluid Mech. 187 (1988) 62–98.ADSCrossRefGoogle Scholar
  13. 13.
    Sellin, R.H.J, and Ollis, M.: Effect of Pipe Diameter on Polymer Drag Reduction. Ind. Eng. Chem. Prod. Res. Dev. 22 (1983) 445–452.CrossRefGoogle Scholar
  14. 14.
    Hershey, H.C. and Zakin, J.L.: A Molecular Approach to Predicting the Onset of Drag Reduction in the Turbulent Flow of Dilute Polymer Solutions. Chem. Engrg. Sei. 22 (1967) 1847–1857.CrossRefGoogle Scholar
  15. 15.
    Seyer, F.A. and Metzner, A.B.: Turbulent Flow Properties of Viscoelastic Fluids. Can. J. Chem. Engrg. 45 (1967) 121–126.CrossRefGoogle Scholar
  16. 16.
    Zimm, B.H.: Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss. J. Chem. Phys. 24 (1956) 269–278.MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Bird, R.G., Hassager, O., Armstrong, R.C. and Curtis, C.F.: Dynamics of Polymeric Liquids 2. New York: J. Wiley & Sons 1977.Google Scholar
  18. 18.
    Darby, R. and Chang, H.D.: Prediction of Turbulent Drag Reduction in Polymer Solutions from Rheological Properties. In Drag Reduction ed. R.H.J. Sellin and R.T. Moses, p.A.4-l-A.4–4 University of Bristol, UK, 1984.Google Scholar
  19. 19.
    Berman, N.S.: Drag Reduction by Polymers. Ann. Rev. Fluid Mech. 10 (1978) 47–64.ADSCrossRefGoogle Scholar
  20. 20.
    Lumley, J.L. and Kubo, I.: Turbulent Drag Reduction by Polymer Additives. In the Influence of Polymer Additives on Velocity and Temperature Fields ed. B. Gampert, p.3–21. Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  21. 21.
    Bewersdorff, H.-W.: Heterogene Widerstandsverminderung bei turbulenten Rohstromungen. Rheol Acta, 23 (1984) 522–534.CrossRefGoogle Scholar
  22. 22.
    Harder, K.J.: Effect of Wall Strain Rate, Polymer Concentration and Channel Height Upon Drag Reduction and Turbulent Structure. MSME thesis, Purdue University, 1989.Google Scholar
  23. 23.
    Granville, P.S.: Scaling-up of Pipe Flow Frictional Data for Drag Reducing Polymer Solutions. Proceeding, 2nd Int’l Conf. on Drag Reduction, British Hydromechanics Research Association, Cambridge, UK, 1978.Google Scholar
  24. 24.
    Virk, P.S.: An Elastic Sublayer Model for Drag Reduction by Dilute Solutions of Linear Macromolecules. J. Fluid Mech., 45 (1971) 417–440.ADSCrossRefGoogle Scholar
  25. 25.
    Luchik, T.S. and Tiederman, W.G.: Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. 190 (1988) 241–263.ADSCrossRefGoogle Scholar
  26. 26.
    Reischman, M.M. and Tiederman, W.G.: Laser-Doppler anemometer measurements in drag-reducing channel flows. J. Fluid Mech. 70 (1975) 369–392.ADSCrossRefGoogle Scholar
  27. 27.
    Berner, C. and Scrivener, O.: Drag Reduction and Structure of Turbulence in Dilute Polymer Solutions. In Viscous Flow Drag Reduction ed. by G.R. Hough, p.290–299, American Institute of Aeronautics and Astronautics, New York, NY 1980.Google Scholar
  28. 28.
    Mizushina, T. and Usui, H.: Reduction of eddy diffusion for momentum and heat in viscoelastic flow in a circular tube. Phys. Fluids 20, 10, Pt. II (1977) S100-S108.ADSCrossRefGoogle Scholar
  29. 29.
    McComb, W.D. and Rabie, L.H.: Part II: Laser-Doppler Measurements of Turbulent Structure. AIChE J. 28 (1982) 558–565.CrossRefGoogle Scholar
  30. 30.
    Willmarth, W.W., Wei, T. and Lee, C.O.: Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids, 30 (1987) 933–935.ADSCrossRefGoogle Scholar
  31. 31.
    Bewersdorff, H.-W. and Berman, N.S.: The influence of flow-induced non- Newtonian fluid properties on turbulent drag reduction. Rheol Acta 27 (1988) 130–136.MATHCrossRefGoogle Scholar
  32. 32.
    Schmid, A.: Experimental Investigation of the Influence of Drag Reducing Polymers on a Turbulent Channel Flow. In Drag Reduction ed. R.H.J. Sellin and R.T. Moses, p.B.12–1 — B.12–7, University of Bristol, UK, 1984.Google Scholar
  33. 33.
    Walker, D.T. and Tiederman, W.G.: Turbulent structure in a channel flow with polymer injection at the wall. Submitted to J. Fluid Mech. 1989.Google Scholar
  34. 34.
    Mansour, N.N., Kim, J. and Moin, P.: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194 (1988) 15–44.ADSCrossRefGoogle Scholar
  35. 35.
    Wells, C.S. and Spangler, J.G.: Injection of a drag-reducing fluid into turbulent pipe flow of a Newtonian fluid. Phys. Fluids 10 (1967) 1980–1984.CrossRefGoogle Scholar
  36. 36.
    Kline, S.J., Reynolds, W.C., Schraub, F.A. and Runstadler, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30 (1967) 741–773.ADSCrossRefGoogle Scholar
  37. 37.
    Kim, H.T., Kline, S.J. and Reynolds, W.C.: The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1971) 133–160.ADSCrossRefGoogle Scholar
  38. 38.
    Corino E.R. and Brodkey, R.S.: A visual study of turbulent shear flow. J. Fluid Mech. 37 (1969) 1–30.ADSCrossRefGoogle Scholar
  39. 39.
    Donohue, G.L., Tiederman, W.G. and Reischmann, M.M.: Flow visualization of the near-wall region in a drag-reducing flow. J. Fluid Mech. 56 (1972) 559–575.ADSCrossRefGoogle Scholar
  40. 40.
    Eckelman, L.D., Fortuna, G. and Hanratty, T.J.: Drag reduction and the wavelength of flow-oriented wall eddies. Nature 236 (1972) 94–96.ADSCrossRefGoogle Scholar
  41. 41.
    Achia, B.U. and Thompson, D.W.: Structure of the turbulent boundary layer in drag reducing pipe flow. J. Fluid Mech. 81 (1977) 439–464.ADSCrossRefGoogle Scholar
  42. 42.
    Oldaker, D.K. and Tiederman, W.G.: Spatial structure of the viscous sublayer in drag-reducing channel flows. Phys. Fluids 20, No.l0, Pt.II (1977) S133-S144.ADSCrossRefGoogle Scholar
  43. 43.
    Tiederman, W.G., Smith, A.J. and Oldaker, D.K.: Structure of the viscous sublayer in drag-reducing channel flows. In Turbulence in Liquids, 1975 ed. by J.L. Zakin and G.K. Patterson, p.312–322 University of Missouri-Rolla, USA, 1977.Google Scholar
  44. 44.
    Bogard, D.G. and Tiederman, W.G.: Investigation of flow visualization techniques for detecting turbulent bursts. In Symposium on Turbulence, 1981 ed by X.B. Reed, G.K. Patterson and J.L. Zakin, p.289–302, University of Missouri-Rolla, USA, 1983.Google Scholar
  45. 45.
    Bogard, D.G. and Tiederman, W.G.: Burst detection with single-point velocity measurements. J. Fluid Mech. 162 (1986) 389–413.ADSCrossRefGoogle Scholar
  46. 46.
    Luchik, T.S. and Tiederman, W.G.: Timescale and structure of ejections and bursts in turbulent channel flows. J. Fluid Mech. 174 (1987) 529–552.ADSCrossRefGoogle Scholar
  47. 47.
    Tiederman, W.G.: Eulerian Detection of Turbulent Bursts. In Near Wall Turbulence ed. by S.J. Kline and N.H. Afgan, Hemisphere, New York, 1989 (in press).Google Scholar
  48. 48.
    Tiederman, W.G., Luchik, T.S. and Bogard, D.G.: Wall-layer structure and drag reduction. J. Fluid Mech. 156 (1985) 419–437.ADSCrossRefGoogle Scholar
  49. 49.
    Bogard, D.G. and Tiederman, W.G.: Characteristics of ejections in turbulent channel flow. J. Fluid Mech. 179 (1987) 1–19.ADSCrossRefGoogle Scholar
  50. 50.
    Gyr, A.: Direct Evidence that Drag Reduction is an Efl’ect of the Elongation of the Polymer Molecules. In Drag Reduction ed. by R.H.J. Sellin and R.T. Moses, p.B.l0-l-B.10–7, University of Bristol, UK, 1984.Google Scholar
  51. 51.
    James, D.F., McLean, B.D. and Saringer, J.H.: Presheared Extensional Flow of Dilute Polymer Solutions. J. Rheology 31 (1987) 453–481.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • William G. Tiederman
    • 1
  1. 1.School of Mechanical EngineeringPurdue UniversityW. LafayetteUSA

Personalised recommendations