Skip to main content

Part of the book series: Electric Energy Systems and Engineering Series ((ELECTRIC))

  • 1051 Accesses

Abstract

According to Maxwell’s equations, all electromagnetic field problems can be expressed in partial differential equations which are subject to specific boundary conditions. By using Green’s function, the partial differential equations can be transformed into integral equations or differential-integral equations. The analytical solution of these equations can only be obtained in very simple cases. Therefore numerical methods are significant for the solution of practical problems. In numerical solutions the following aspects have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hammond, Sources and Fields—Some Thoughts on Teaching the Principles of Electro-magnetism, Int. J. Elect. Eng., 7, 65–76, 1969.

    Google Scholar 

  2. . B.H. Mcdonald, A. Wexler, Mutually Constrained Partial Differential and Intergral Equation Field Formulations. In Finite Elements in Electrical ana Magnetic Field Problems. (Ed. M.V.K. Chari and P.P. Silvester), John Wiley & Sons, 1980, Ch. 9

    Google Scholar 

  3. L.F. Richardson, The Approximate Arithmetical Solution by Finite Differences of Physical Problems, Trans. Roy. Soc. (London) A, 210, 305–357, 1910

    Google Scholar 

  4. M.J. Turner, R.W. Clough et ai Stiffness and Deflection Analysis of Complex Structures, J. Aero. Sci. 23, 805–823, 1956

    MATH  Google Scholar 

  5. G.T. Symm, Integral Equation Methods in Potential Theory II, Proc. Roy. Soc. (London) A 275, 33–46, 1963

    Article  MathSciNet  MATH  Google Scholar 

  6. C.A. Brebbia, Boundary Element Method for Engineers, Pentech Press, 1978

    Google Scholar 

  7. C.W. Trowbridge, Electromagnetic Computing: The Way Ahead?, IEEE Trans. May. 24(1), 13–18, 1988

    Article  Google Scholar 

  8. L. Collatz, Functional Analysis and Numerical Mathematics (English edn) Academic Press, 1966

    Google Scholar 

  9. I. Stakgold, Boundary Value Problem in Mathematic Physics, Macmillan, 1967

    Google Scholar 

  10. S.G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, 1964

    MATH  Google Scholar 

  11. S.G. Mikhlin, Mathematic Physics, An Advanced Course, North-Holland, 1970

    Google Scholar 

  12. B.H. McDonald, M. Friedman, A. Wexler, Variational Solution of Integral Equations, IEEE Trans. MTT 22(3), 237–248, 1974

    Article  MathSciNet  Google Scholar 

  13. G. Jeng, A. Wexler, Self-adjoint Variational Formulation of Problems Having Non-self-adjoint Operator, IEEE Trans. MTT, 26(2), 91–94, 1978

    Article  MathSciNet  Google Scholar 

  14. Zhang Wenzun, Functional Methods in Electromagnetic Engineering (in Chinese), Science Press, Shanghai, 1984

    Google Scholar 

  15. Bruce A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, 1972

    MATH  Google Scholar 

  16. S.H. Crandall, Engineering Analysis, McGraw-Hill, New York, 1956

    MATH  Google Scholar 

  17. L. Collatz, The Numerical Treatment of Differential Equations, Springer-Verlag, 1960

    Book  MATH  Google Scholar 

  18. R. Wait, A.R. Mitchell, Finite Element Analysis and Applications, John Wiley & Sons, 1985

    MATH  Google Scholar 

  19. C.W. Steele, Numerical Computation of Electric and Magnetic Fields, VNR Company, 1987

    Google Scholar 

  20. Wang Xinzhong, Electromagnetic Field Theory and Applications (in Chinese), Science Press, Bejing, 1986

    Google Scholar 

  21. L. Cairo, T. Kahan, Variational Techniques in Electromagnetism (English edn trans, by G.D. Sims), Blackie and Son Limited, 1965

    Google Scholar 

  22. P.P. Silvester, R.L. Ferrari, Finite Elements For Electrical Engineers, Cambridge University Press, 1983

    MATH  Google Scholar 

  23. Yukio Kagawa, Tadakuni Murai, Shinji Kitagami, On the Compatibility of Finite Element-Boundary Element Coupling in Field Problems, COMPEL, 1(4), 197–217, 1982

    Article  Google Scholar 

  24. S.J. Salon, J.M. Schnedia, A. Hybrid Finite Element-Boundary Integral Formulation of the Eddy Current Problem, IEEE Trans, on Mag., 18(2), 461–466, 1982

    Article  Google Scholar 

  25. S.J. Salon, J. D’Angelo, Application of the Hybrid Finite Element Boundary Element Method in Electromagnetics, IEEE Trans, on Mag. 24(1), 80–85, 1988

    Article  Google Scholar 

  26. R.F. Harrington, Field Computation by Moment Methods, Macmillan, 1968

    Google Scholar 

  27. R.F. Harrington, Boundary Element and the Method of Moment. In Boundary Elements, Proc. of International Conference of Boundary Element Method (Ed. CA. Brebbia), 31–40, 1980

    Google Scholar 

  28. G. Jeng, A. Wexler, Isoparametric, Finite Element, Variational Solution of Integral Equation for Three-Dimensional Fields, Int. J. for Numer. M. in Eng., 11(9), 1455–1471, 1977

    Article  MATH  Google Scholar 

  29. W. Lipinski, P. Krason, Integral Equations Methods of Analysis Describing the Skin Effect in Conductors, IEEE Trans, on Mag. 18(2), 473–475, 1982

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, Pb. (1993). General Outline of Numerical Methods. In: Numerical Analysis of Electromagnetic Fields. Electric Energy Systems and Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50319-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50319-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50321-4

  • Online ISBN: 978-3-642-50319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics