Advertisement

More on Relativistic Particle Models

  • Andrzej Derdzinski
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

In this chapter we justify the choice of free matter-particle models described in §§1.16, 1.17. The argument is based on classifying the first-order natural bundles over spacetimes, i.e., representations of the isochronous Lorentz group, and then using analogy with the nonrelativistic case.

Keywords

Irreducible Representation Isotropy Algebra Linear Isometry Timelike Vector Natural Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhelobenko, D.P. [Zelobenko, D.P.] (1973): Compact Lie Groups and Their Representations (AMS Translations, Providence, R.L)zbMATHGoogle Scholar
  2. Mackey, G.W. (1963): The Mathematical Foundations of Quantum Mechanics (Benjamin, New York)zbMATHGoogle Scholar
  3. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  4. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  5. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  6. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  7. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  8. Hayward, R, W. (1976): The Dynamics of Fields of Higher Spin, National Bureau of Standards Monograph 154 (U. S. Government, Washington, D.C.)Google Scholar
  9. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  10. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  11. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  12. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  13. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  14. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  15. Hayward, R, W. (1976): The Dynamics of Fields of Higher Spin, National Bureau of Standards Monograph 154 (U. S. Government, Washington, D.C.)Google Scholar
  16. Schweber, S.S. (1962): An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York)zbMATHGoogle Scholar
  17. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  18. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  19. Hayward, R, W. (1976): The Dynamics of Fields of Higher Spin, National Bureau of Standards Monograph 154 (U. S. Government, Washington, D.C.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andrzej Derdzinski
    • 1
  1. 1.Dept. of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations