Advertisement

Symmetry Breaking and Positive Masses

  • Andrzej Derdzinski
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

This chapter describes how particle masses can be defined in terms of a given Lagrangian density along with a fixed energy-minimizing vacuum state. We then proceed to discuss the dynamics of the electroweak model, using the Higgs mechanism. The latter consists in a refined version of the definition of mass that leads to the required massive particles e, W+, W-, but prevents the appearance of any unwanted, massless Goldstone bosons.

Keywords

Higgs Boson Vector Bundle Vacuum State Fibre Bundle Natural Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bleecker, D. (1981): Gauge Theory and Variational Principles, Global Analysis, Pure and Applied, Series A, No. 1 (Addison-Wesley, Reading, Mass.)Google Scholar
  2. Felsager, B. (1983): Geometry, Particles and Fields (Odense Univ. Press, Odense)Google Scholar
  3. Ryder, L.H. (1986): Elementary Particles and Symmetries, Documents on Modern Physics (Gordon and Breach, New York)Google Scholar
  4. Bleecker, D. (1981): Gauge Theory and Variational Principles, Global Analysis, Pure and Applied, Series A, No. 1 (Addison-Wesley, Reading, Mass.)Google Scholar
  5. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  6. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  7. Bleecker, D. (1981): Gauge Theory and Variational Principles, Global Analysis, Pure and Applied, Series A, No. 1 (Addison-Wesley, Reading, Mass.)Google Scholar
  8. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  9. Chaichian, M., Nelipa, N.F. (1984) Introduction to Gauge Field Theories, Texts and Monographs in Physics (Springer-Verlag, Berlin)CrossRefGoogle Scholar
  10. Bogolyubov, N.N. [Bogoliubov, N.N.], Shirkov, D.V. (1983): Quantum Fields (Benjamin/Cummings, Reading, Mass.)zbMATHGoogle Scholar
  11. Ramond, P. (1981): Field Theory (Benjamin/Cummings, Reading, Mass.)Google Scholar
  12. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  13. Ryder, L.H. (1985): Quantum Field Theory (Cambridge Univ. Press, Cambridge)Google Scholar
  14. Bogolyubov, N.N. [Bogoliubov, N.N.], Shirkov, D.V. (1983): Quantum Fields (Benjamin/Cummings, Reading, Mass.)Google Scholar
  15. Huang, K. (1982): Quarks, Leptons and Gauge Fields (World Scientific, Singapore)Google Scholar
  16. Chaichian, M., Nelipa, N.F. (1984) Introduction to Gauge Field Theories, Texts and Monographs in Physics (Springer-Verlag, Berlin)CrossRefGoogle Scholar
  17. Sudbery, A. (1986): Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians (Cambridge University Press, Cambridge)zbMATHGoogle Scholar
  18. Ryder, L.H. (1985): Quantum Field Theory (Cambridge Univ. Press, Cambridge)Google Scholar
  19. Leite Lopes, J. (1981): Gauge Field Theories (Pergamon Press, Oxford)Google Scholar
  20. Huang, K. (1982): Quarks, Leptons and Gauge Fields (World Scientific, Singapore)Google Scholar
  21. Bogolyubov, N.N. [Bogoliubov, N.N.], Shirkov, D.V. (1983): Quantum Fields (Benjamin/Cummings, Reading, Mass.)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andrzej Derdzinski
    • 1
  1. 1.Dept. of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations