Advertisement

Infrared Photochemistry of Gas Phase Ions

  • L. R. Thorne
  • C. A. Wright
  • J. L. Beauchamp
Part of the Lecture Notes in Chemistry book series (LNC, volume 31)

Abstract

Experiments involving molecules which are truly isolated for time periods .exceeding several milliseconds require special techniques for particle storage at low pressure. In the case of charged species, crossed electric and magnetic fields can be used to restrain particle motion for time periods exceeding several hours, establishing conditions in the laboratory which exist in nature only in the interstellar medium. The phenomenon of ion cyclotron resonance provides a sensitive and selective means to detect charged particles stored in a magnetic field. At pressure below 10 torr stored ions are forced to maintain equilibrium with their environment by the absorption and emission of infrared radiation rather than in collisions with other molecules. Infrared lasers offer the possibility of upsetting this equilibrium by exposing molecules to an enormous photon flux at specific wavelengths. What fraction of the ion population will absorb infrared radiation at a specific wavelength? Can more than one photon be absorbed?

Keywords

Dissociation Rate Infrared Laser Dissociation Rate Constant Laser Irradiance Trapping Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Lehman, M.M. Bursey, in “Ion Cyclotron Resonance Spectroscopy”, Wiley-Interscience: New York, 1976Google Scholar
  2. 1a.
    J.L. Beauchamp, Ann. Rev. Phys. Chem. 22 (1971) 527.CrossRefGoogle Scholar
  3. 2.
    D.S. Bomse, R.L. Woodin, J.L. Beauchamp, J. Am. Chem. Soc. 101 (1979) 5503.CrossRefGoogle Scholar
  4. 3.
    R.L. Woodin, D.S. Bomse, J.L. Beauchamp, J. Am. Chem. Soc. 100 (1978) 3248.CrossRefGoogle Scholar
  5. 4.
    D.S. Bomse, R.L. Woodin, J.L. Beauchamp, in “Advances in Laser Chemistry” A.H. Zewail, Ed., Springer: Berlin, Heidelberg, New York, 1978, pp 362–373.CrossRefGoogle Scholar
  6. 5.
    R.L. Woodin, D.S. Bomse, J.L. Beauchamp, in “Chemical and Biochemical Applications of Lasers”, C.B. Moore, Ed., Academic Press: New York, 1979, Vol. IV, p 355.Google Scholar
  7. 6.
    R.L. Woodin, D.S. Bomse, J.L. Beauchamp, Chem. Phys. Lett. 63 (1979) 630.CrossRefGoogle Scholar
  8. 7.
    L.R. Thorne, J.L. Beauchamp, J. Chem. Phys. 74 (1981) 5100.CrossRefGoogle Scholar
  9. 8.
    D.S. Bomse, J.L. Beauchamp, J. Am. Chem. Soc. 103 (1981) 3292.CrossRefGoogle Scholar
  10. 9.
    D.S. Bomse, J.L. Beauchamp, Chem. Phys. Lett. 77 (1981) 25.CrossRefGoogle Scholar
  11. 10.
    C.A. Wight, J.L. Beauchamp, Chem. Phys. Lett. 77 (1981) 30.CrossRefGoogle Scholar
  12. 11.
    C.W. Tsang, A.G. Harrison, Org. Mass Spectrom. 3 (1970) 647.CrossRefGoogle Scholar
  13. 12.
    D.W. Berman, D.S. Bomse, J.L. Beauchamp, unpublished photoionization results.Google Scholar
  14. 13.
    J.L. Beauchamp, D. Holtz, S.D. Woodgate, S.L. Pratt, J. Am. Chem. Soc. 94 (1972) 2798.CrossRefGoogle Scholar
  15. 14.
    D.W. Berman, J.L. Beauchamp, L.R. Thorne, Int. J. Mass Spectrom. Ion Phys. 39 (1981) 47.CrossRefGoogle Scholar
  16. 15.
    D.W. Berman, J.L. Beauchamp, J. Phys. Chem. 84 (1980) 2233.CrossRefGoogle Scholar
  17. 16.
    K.R. Ryan, L.W. Sieck, J.H. Futrell, J. Chem. Pyhs. 41 (1964) 111CrossRefGoogle Scholar
  18. 16a.
    L.W. Sieck, F.P. Abramson, J.H. Futrell, J. Chem. Phys. 45 (1966) 2859.CrossRefGoogle Scholar
  19. 17.
    E.P. Grimsurd, P.J. Kebarle, J. Am. Chem. Soc. 95 (1973) 7939.CrossRefGoogle Scholar
  20. 18.
    D.R. Ridge, J.L. Beauchamp, J. Am. Chem. Soc. 93 (1971) 5925.CrossRefGoogle Scholar
  21. 19.
    J.L. Beauchamp, R.C. Dunbar, J. Am. Chem. Soc. 92 (1970) 1477.CrossRefGoogle Scholar
  22. 20.
    J.L. Beauchamp, M.C. Caserío, J. Am. Chem. Soc. 94 (1972) 2638.CrossRefGoogle Scholar
  23. 21.
    J.L. Beauchamp, J. Am. Chem. Soc. 91 (1969) 5925CrossRefGoogle Scholar
  24. 21a.
    J.L. Beauchamp, M.C. Caserio, T.B. McMahon, J. Am. Chem. Soc. 96 (1974) 6243.CrossRefGoogle Scholar
  25. 22.
    Much of the thermochamical data are obtained from appropriate proton affinity data, neutral heats of formation, and tabulated ion thermochemistry contained in J.R. Wolf, R.H. Staley, I. Koppel, M. Taagepara, R. T. Mclver, Jr., J.L. Beauchamp, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 5417.CrossRefGoogle Scholar
  26. 22a.
    H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J. Phys. Chem. Ref. Data Suppl. 1 (1977) 6.Google Scholar
  27. 22b.
    J.D. Cox, G. Pilcher in “Thermochemistry of Organic and Organometallic Compounds”, Academic Press, New York, 1970.Google Scholar
  28. 22c.
    For some alcohols proton affinities are not experimentally attainable. Methods for estimating these numbers as well as experimentally determined ΔHf values for proton bound alcohol dimers are to be reported in another publication (D.S. Bomse, J.L. Beauchamp, J. Phys. Chem. 85 (1981) 488) .CrossRefGoogle Scholar
  29. 23.
    T.E. Orlowski, B.S. Freiser, J.L. Beauchamp, Chem. Phys. 16 (1976) 439.CrossRefGoogle Scholar
  30. 24.
    B.J.M. Neijzen, C.A. deLange, J. Elektron. Spectrom. 14 (1978) 187.CrossRefGoogle Scholar
  31. 25.
    J.W. Rabalais, R.J. Colton, J. Electron. Spectrom. 1 (1972/1973) 83.CrossRefGoogle Scholar
  32. 26.
    R.W. Ambartzumian, V.S. Tetokhov in “Chemical and Biochemical Applications of Lasers”. C.B. Moore, Ed., Academic Press: New York, 1977, Vol. III.Google Scholar
  33. 27.
    A. Hartford Jr., Chem. Phys. Lett. 53 (1978) 503.CrossRefGoogle Scholar
  34. 28.
    J.R. Nielsen, H.H. Claassen, D.C. Smith, J. Chem. Phys. 20 (1952) 1916.CrossRefGoogle Scholar
  35. 29.
    H. Wieser, W.G. Laidlaw, P.J. Krueger, H. Fuhrer, Spectrochim. Acta, 24A (1968) 1055.Google Scholar
  36. 30.
    J.L. Beauchamp, D. Holtz, S.D. Woodgate, S.L. Pratt, J. Am. Chem. Soc. 94 (1972) 2798.CrossRefGoogle Scholar
  37. 31.
    M.J. Coggiola, P.C. Crosby, J.R. Peterson, J. Chem. Phys. 72 (1980) 6507.CrossRefGoogle Scholar
  38. 32.
    L. Bass, T. Su, W.J. Chesnavich, M.T. Bowers, Chem. Phys. Lett. 34 (1975) 119.CrossRefGoogle Scholar
  39. 33.
    P. Kolodner, C.W. Winterfeld, E. Yablonovitch, Opt. Commun. 20 (1977) 119.CrossRefGoogle Scholar
  40. 34.
    D.M. Golden, M.J. Rossi, A.C. Baldwin, J.R. Barker, Ace. Chem. Res. 14 (1981) 56.CrossRefGoogle Scholar
  41. 35.
    P.A. Schulz, Aa.S. Sudbø, D.J. Krajnovich, H.S. Kurok, Y.R. Shen, Y.T. Lee, Ann. Rev. Phys. Chem. 30 (1979) 379.CrossRefGoogle Scholar
  42. 36.
    M.J. Quack, Chem. Phys. 69 (1978) 1294.Google Scholar
  43. 37.
    CD. Cantrell, S.M. Freund, J.L. Lyman in “Laser Handbook”, North Holland Publishing: Amsterdam, Vol. III, to appear.Google Scholar
  44. 38.
    S. Mukamel, J.J. Jortner, J. Chem. Phys. 65 (1976) 5204.CrossRefGoogle Scholar
  45. 39.
    N.R. Isenor, V. Merchant, R.S. Hallsworth, M.S. Richardson, Ca. J. Phys. 51 (1973) 1281.CrossRefGoogle Scholar
  46. 40.
    V.M. Akulin, S.S. Alimprev, N.V. Kalov, L.A. Shelepin, Zh. Eksp. Theor. Fiz. 69 (1975) 836 (Sov. Phys. JETP 42 (1975) 427) .Google Scholar
  47. 41.
    P.J. Robinson, K.A. Hollbrook in “Unimolecular Reactions”, Wiley: New York, 1972.Google Scholar
  48. 42.
    J.W. Ypenburg, J. Gerding, Rec. Trav. Chim. 90 (1971) 885CrossRefGoogle Scholar
  49. 42a.
    J.W. Ypenburg, Rec. Trav. Chim. 91 (1972) 671.CrossRefGoogle Scholar
  50. 43.
    W.F. Edgell, C.E. May, J. Chem. Phys. 22 (1954 (1808) .CrossRefGoogle Scholar
  51. 44.
    J.G. Black, E. Yablonovitch, N. Bloembergen, S. Mukamel, Phys. Rev. Lett. 38 (1977) 1131.CrossRefGoogle Scholar
  52. 45.
    E.R. Grant, P.A. Schulz, Aa.S. Sudbtf, Y.R. Shen, Y.T. Lee, Phys. Rev. Lett. 40 (1978) 115.CrossRefGoogle Scholar
  53. 46.
    R.C Dunbar, Spectrochim. Acta 31A (1975) 797.Google Scholar
  54. 47.
    L. Allen, J.H. Eberly in “Optical Resonance and Two Level Atoms”, Wiley-Interscience: New York, 1975.Google Scholar
  55. 48.
    D.S. Frankel Jr., T. Manuccia, J. Chem. Phys. Lett. 54 (1978) 451.Google Scholar
  56. 49.
    J.T. Knudtson, G.W. Flynn, J. Chem. Phys. 58 (1973) 1467.CrossRefGoogle Scholar
  57. 50.
    G.P. Quigley in “Advances in Laser Chemistry”, A.H. Zewail, Ed., Springer Series in Chemical Physics, Springer: Berlin, Heidelberg, New York, 1978, and references contained therein.Google Scholar
  58. 51.
    J.C Polanyi, K.B. Woodall, J. Chem. Phys. 56 (1972) 1563.CrossRefGoogle Scholar
  59. 52.
    A.M.G. Ding, J.C. Polanyi, Chem. Phys. 10 (1975) 39.CrossRefGoogle Scholar
  60. 53.
    R.C Dunbar, Spectrochim. Acta 31A (1975) 797.Google Scholar
  61. 54.
    D.T. Gillespie, J. Comput. Phys. 22 (1976) 403CrossRefGoogle Scholar
  62. 54a.
    D.T. Gillespie, J. Phys. Chem. 81 (1977) 2340.CrossRefGoogle Scholar
  63. 55.
    J.R. Barker, J. Chem. Phys. 72 (1980) 3686.CrossRefGoogle Scholar
  64. 56.
    R.L. Woodin, unpublished results.Google Scholar
  65. 57.
    Laser irradiation leads to an accelerated bimolecular reaction in addition to unimolecular decomposition reaction. See ref. 8.Google Scholar
  66. 58.
    D.H. Williams, Acc. Chem. Res. 10 (1977) 280.CrossRefGoogle Scholar
  67. 59.
    R.D. Bowen, D.H. Williams, J. Am. Chem. Soc. 102 (1980) 2752.CrossRefGoogle Scholar
  68. 60.
    D.H. Williams, I. Howe in “Principles of Organic Mass Spectrometry”, McGraw Hill: New York, 1972.Google Scholar
  69. 60a.
    K. Levsen, J. Schwarz, Angew. Chem. 88 (1976) 589CrossRefGoogle Scholar
  70. 60b.
    K. Levsen, J. Schwarz, Angew. Chem., Int. Ed. Engl. 15 (1976) 509.CrossRefGoogle Scholar
  71. 60c.
    R.G. Cooks, J.H. Benyon, R.M. Caprioli, G.R. Lester in “Metastable Ions”, Elsevier: Amsterdam, 1973.Google Scholar
  72. 61.
    F.W. McLafferty, Ace. Chem. Res. 13 (1980) 33CrossRefGoogle Scholar
  73. 61a.
    G.A. McClusky, R.W. Kondrat, R.G. Cooks, J. Am. Chem. Soc. 100 (1978) 6045.CrossRefGoogle Scholar
  74. 62.
    A.J. Collussi, S.W. Benson, R.S. Huang, Chem. Phys. Lett. 52 (1977) 349CrossRefGoogle Scholar
  75. 62a.
    Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee, J. Chem. Phys. 68 (1978) 1306.CrossRefGoogle Scholar
  76. 62b.
    Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee, J. Chem. Phys. 70 (1979) 912 and references contained therein.CrossRefGoogle Scholar
  77. 63.
    Reported results of high power pulsed infrared laser photolysis of trapped ions all indicate only one set of products formed. However, only a few systems have been studied to date: R.N. Rosenfeld, J.M. Jasinski,Google Scholar
  78. 63a.
    J.I. Brauman, J. Am. Chem. Soc. 101 (1979) 3999CrossRefGoogle Scholar
  79. 63b.
    R.N. Rosenfeld, J.M. Jasinski, J.I. Brauman, J. Chem. Phys. 71 (1979) 1030.CrossRefGoogle Scholar
  80. 64.
    F.J. Comes, S. Pionteck, Chem. Phys. Lett. 42 (1976) 558.CrossRefGoogle Scholar
  81. 65.
    P.B. Armentrout, D.W. Berman, J.L. Beauchamp, Chem. Phys. Lett. 53 (1978) 255.CrossRefGoogle Scholar
  82. 66.
    T.E. Orlowski, B.S. Freiser, J.L. Beauchamp, Chem. Phys. 16 (1976) 439.CrossRefGoogle Scholar
  83. 67.
    G. Varsanyi in “Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives”, Wiley: New York, 1974, p 73.Google Scholar
  84. 68.
    R.G. Bray, M.J. Berry, J. Chem. Phys. 71 (1979) 4909.CrossRefGoogle Scholar
  85. 69.
    R. Duperrex, J. van den Bergh, J. Chem. Phys. 73 (1980) 585.CrossRefGoogle Scholar
  86. 70.
    Reaction thermochemistry was compiled from: J.F. Wolf, R.H. Staley, I. Koppel, M. Taagepera, R.T. Mclver, J.L. Beauchamp, R.W. Taft, J. Am. Chem. Soc. 99 (1977) 5417CrossRefGoogle Scholar
  87. 70a.
    H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J. Phys. Chem. Ref. Data 1 (1977) 6.Google Scholar
  88. 70b.
    J.D. Cox, G. Pilcher in “Thermochemistry of Organic and Organometallic Compounds”, Academic Press: New York, 1970Google Scholar
  89. 70c.
    W.R. Davidson, J. Sunner, P. Kebarle, J. Am. Chem. Soc. 101 (1979) 1675.CrossRefGoogle Scholar
  90. 71.
    Cluster formation (CH3OH) n H+ (n = 1–8) , is observed using high pressure mass spectrometry with total neutral (methanol plus unreactive buffer) pressures of ≤5 Torr: E.P. Grimsrud, P. Kebarle, J. Am. Chem. Soc. 95 (1973) 7939.CrossRefGoogle Scholar
  91. 72.
    Excitation of neutral CH3OH does not contribute to the observed laser-induced chemistry because of the brief residence time of neutrals in the ion storage and irradiation region. This is discussed in detail elsewhere. Since both CH3OH and (CH3OH) 2H+ absorb in the 10-µm region, it might be expected that (CH3OH) H+ (OH2) also absorbs. However, no evidence is obtained for laser excitation enhancing the reverse of reaction 3 or for multiphoton dissociation of (CH3OH) H+ (OH2) to CH3OH2 + and H2O (25 kcal/ mol) . Both results suggest that (CH3OH) H (OH2) , in comparison with (CH3OH) 2H , is not heated significantly by the infrared laser. Based on the proposed kinetic scheme, heating might result in a slight decrease in k1, for reaction 1, which would be difficult to detect.Google Scholar
  92. 73.
    At the laser powers used, the typical rate for absorbing a single photon (103 s-1 for a transition with absorption cross section of 10-17 cm2) is very much slower than the decomposition rate (>107 s-1) of the intermediate. Thus the enhanced reaction rate is due to excitation of reactants, not to the intermediate.Google Scholar
  93. 74.
    C.A. Wight, J.L. Beauchamp, J. Am. Chem. Soc., submitted for publication.Google Scholar
  94. 75.
    C.A. Wight, J.L. Beauchamp, manuscript in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • L. R. Thorne
    • 1
  • C. A. Wright
    • 1
  • J. L. Beauchamp
    • 1
  1. 1.Arthur Ames Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations