Signals, Noise, Sensitivity and Resolution in Ion Cyclotron Resonance Spectroscopy

  • Melvin B. Comisarow
Part of the Lecture Notes in Chemistry book series (LNC, volume 31)


This chapter discusses ion cyclotron resonance (ICR) signal generation, noise generation in ICR spectrometers, and ICR mass resolution. The quotient of the ICR signal strength and the ICR noise level is the ICR sensitivity. Many important aspects of the above topics have been separately discussed in the literature. This chapter is an attempt to discuss the topics in a coherent manner and to describe additional aspects of the topics which have heretofor been ignored. In the following sections, the origin of ICR signals is discussed in terms of a signal model which accounts for the properties of the signal. The time dependence of the ICR signal is then shown to be related to the ICR resolution. Many factors which affect the time dependence of the ICR signal are discussed and the relative importance of the factors is assessed. The origin of electronic noise in ICR spectrometers is also discussed.


Magnetic Field Strength Cyclotron Frequency Magnetic Field Inhomogeneity Cyclotron Motion Electric Monopole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Comisarow, J. Chem. Phys. 69(1978)4097.CrossRefGoogle Scholar
  2. 2.
    M. B. Comisarow and A. G. Marshall, J. Chem. Phys. 64(1976)110.CrossRefGoogle Scholar
  3. 3.
    A. G. Marshall, M. B. Comisarow and G. Parisod, J. Chem. Phys. 71 (1979)4434.CrossRefGoogle Scholar
  4. 4.
    J. I. Steinfeld, “Molecules and Radiation”, Harper and Row, New York (1974).Google Scholar
  5. 5.
    M. Sargent, M. O. Scully, W. I. Lamb, Jr., “Laser Physics”, Addison Wesley, Reading, Mass., (1974).Google Scholar
  6. 6.
    A. M. Portis, Phys. Rev. 91(1953)1071.CrossRefGoogle Scholar
  7. 7.
    R. P. Feynman, “The Feynman Lectures on Physics”, Addison-Wesley Publishing Company, Reading, Mass., (1963).Google Scholar
  8. 8.
    D. Wobschall, J. R. Graham and D. P. Malone, Phys. Rev 131(1963)1565.CrossRefGoogle Scholar
  9. 9.
    J. L. Beauchamp, J. Chem. Phys. 46(1967)1231.CrossRefGoogle Scholar
  10. 10.
    T. A. Lehman and M. M. Bursey, “Ion Cyclotron Resonance Spectrometry”, John Wiley and Sons, New York (1976), p.6.Google Scholar
  11. 11.
    M. B. Comisarow, J. Chem. Phys. 55(1971)205.CrossRefGoogle Scholar
  12. 12.
    S. G. Lias and P. Ausloos, “Ion-Molecule Reactions”, American Chemical Society, Washington, D.C. (1975) Chapter 4.Google Scholar
  13. 13.
    M. T. Nguyen, J. Wronka and D. P. Ridge, paper presented at ASMS meeting, Seattle, June 3–8, 1979.Google Scholar
  14. 14.
    E. B. Ledford, R. L. White, S. Ghaderi, M. L. Gross and C. L. Wilkins, Anal. Chem. 52(1980)1090.CrossRefGoogle Scholar
  15. 15.
    T. Su and M. T. Bowers, Chapter 3 in “Gas Phase Ion Chemistry”, M. T. Bowers, Editor, Academic Press, New York, 1979.Google Scholar
  16. 16.
    M. B. Comisarow, Int. J. Mass Spec. Ion Phys. 37(1981)247.CrossRefGoogle Scholar
  17. 17.
    M. Comisarow, Adv. Mass Spec. 7(1978)1042.Google Scholar
  18. 18.
    M. Comisarow, Chapter 10 in “Transform Techniques in Chemistry”, P. Griffiths, Editor, Plenum (1978).Google Scholar
  19. 19.
    Halbach, Helv. Phys. Acta 29(1956)37.Google Scholar
  20. 20.
    G. A. Williams and H. S. Gutowsky, Phys. Rev. 104(1956)Google Scholar
  21. 21.
    F. Bloch, Phys. Rev. (1951)496.Google Scholar
  22. 22.
    W. A. Anderson and J. T. Arnold, Phys. Rev. (1954)497.Google Scholar
  23. 23.
    J. D. Jackson, “Classical Electrolynomics” Wiley (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Melvin B. Comisarow
    • 1
  1. 1.Chemistry DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations