Theory for Pulsed and Rapid Scan Ion Cyclotron Resonance Signals

  • Richard L. Hunter
  • Robert T. McIverJr.
Part of the Lecture Notes in Chemistry book series (LNC, volume 31)


Several recent developments have stimulated renewed interest in use of the cyclotron resonance principle for high performance mass spectrometry. A number of laboratories have constructed Fourier transform mass spectrometers (FT-MS) which are capable of ultrahigh mass resolution and rapid scanning [1–4]. These instruments function by storing ions in a one region ion cyclotron resonance (ICR) cell and detecting them by exciting their cyclotron motion in a homogeneous magnetic field [5,6]. The cyclotron resonance principle has also been used in conjunction with ion trapping techniques to study the energetics and dynamics of gaseous ion-molecule reactions [7–10] and to study laser photodetachment and laser photodissoci-ation of ions [11–13]. The most advanced new instruments utilize high-field superconducting magnets to store the ions efficiently in the analyzer cell for long periods of time (up to several minutes).


Magnetic Field Strength Transient Signal Cyclotron Motion Fourier Transform Mass Spectrometer Capacitance Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1(a).
    M.B. Comisarow and A.G. Marshall, Chem. Phys. Lett., 25 (1974) 282,CrossRefGoogle Scholar
  2. 1(b).
    M.B. Comisarow in “Transform Techniques in Chemistry”, (P. Griffiths, Ed.), Plenum Press, New York, 1978, p. 257Google Scholar
  3. 2(a).
    R.L. Hunter and R.T. Mclver, Jr., Chem. Phys. Lett., 49 (1977) 577;Google Scholar
  4. 2(b).
    R.L. Hunter and R.T. Mclver, Jr., Am. Lab. 9 (1977) 13.Google Scholar
  5. 3.
    E.B. Ledford, Jr., S. Ghaderi, R.L. White, R.B. Spencer, P.S. Kulkarni, C.L. Wilkins, and M.L. Gross, Anal. Chem., 52 (1980) 463.CrossRefGoogle Scholar
  6. 4.
    G. Parisod and T. Gaumann, Chimica, 34 (1980) 271.Google Scholar
  7. 5.
    R.T. Mclver, Jr., E.B. Ledford, Jr. and R.L. Hunter, J. Chem. Phys., 72 (1980) 2535.CrossRefGoogle Scholar
  8. 6(a).
    M.B. Comisarow and A.G. Marshall, J. Chem. Phys. 64 (1976) 110;Google Scholar
  9. (b).
    A.G. Marshall, M.B. Comisarow and G. Parisod, J. Chem. Phys., 71 (1979) 4434.CrossRefGoogle Scholar
  10. 7.
    J.E. Bartmess and R.T. McIver, Jr. in “Gas Phase Ion Chemistry,” Vol. 2 (M.T. Bowers, Ed.) Academic Press, New York, 1979, pp 88–119.Google Scholar
  11. 8.
    J.E. Bartmess, J.A. Scott and R.T. Mclver, Jr., J. Am. Chem. Soc, 101 (1979) 6046.CrossRefGoogle Scholar
  12. 9.
    R.T. Mclver, Jr., Rev. Sci. Instrum., 49 (1978) 111.CrossRefGoogle Scholar
  13. 10.
    J.F. Wolf, R.H. Staley, I. Kopple, M. Taagepera, R.T. Mclver, Jr., J. L. Beauchamp and R.W. Taft, J. Am. Chem. Soc., 99 (1977) 5417.CrossRefGoogle Scholar
  14. 11.
    B.K. Janousek and J.I. Brauman in “Gas Phase Ion Chemistry”, Vol. 2, (M.T. Bowers, Ed.) Academic Press, New York, 1979, pp. 53–83.Google Scholar
  15. 12.
    R.C. Dunbar in “Kinetics of Ion-Molecule Reactions”, (P. Ausloos, Ed.) Plenum Press, New York, 1979, pp 53–83.Google Scholar
  16. 13.
    R.L. Woodin, D.S. Bomse and J.L. Beauchamp, J. Am. Chem. Soc, 100 (1978 3248.CrossRefGoogle Scholar
  17. 14(a).
    J.A. Hippie, H. Sommer and H.A. Thomas, Phys. Rev., 76 (1949) 1877;Google Scholar
  18. (b).
    H. Sommer, H.A. Thomas and J.A. Hippie, Phys. Rev., 82 (1951) 697;CrossRefGoogle Scholar
  19. (c).
    R.T. Mclver, Jr., E.B. Ledford, Jr., and J.S. Miller, Anal. Chem., 47 (1975) 692.CrossRefGoogle Scholar
  20. 15.
    D. Wobschall, Rev. Sci. Instrum., 36 (1965) 466.CrossRefGoogle Scholar
  21. 16.
    H. Sommer and H.A. Hippie, Phys. Rev., 78 (1950) 806.CrossRefGoogle Scholar
  22. 17(a).
    R.T. Mclver, Jr., Rev. Sci. Instrum., 44 (1973) 1071;CrossRefGoogle Scholar
  23. (b).
    R.T. Mclver, Jr. and A.D. Baranyi, Int. J. Mass Spectrom. Ion Phys., 14 (1974) 449.CrossRefGoogle Scholar
  24. 18.
    A. Warnick, L.R. Anders, T.E. Sharp, Rev. Sci. Instrum., 45 (1974) 929.CrossRefGoogle Scholar
  25. 19.
    C. Amano, Y. Goto and M. Inoue, Int. J. Mass Spectrom. Ion Phys., 32 (1979) 67.CrossRefGoogle Scholar
  26. 20.
    O.R.T. Mclver, Jr., R.L. Hunter, E.B. Ledford, Jr., M.L. Locke and T.J. Francl, Int. J. Mass Spectrom. Ion Phys., 39 (1981) 65.CrossRefGoogle Scholar
  27. 21.
    L.R. Anders, J.L. Beauchamp, R.C. Dunbar and J. Baldeschwieler, J. Chem. Phys., 45 (1966) 1062.Google Scholar
  28. 22.
    R.T. Mclver, Jr. and R.C. Dunbar, Int. J. Mass Spectrom. Ion Phys., 7 (1971) 471.CrossRefGoogle Scholar
  29. 23.
    D.J. DeFrees, W.J. Hehre, R.T. Mclver, Jr. and D.H. McDaniel, J. Phys. Chem., 83 (1979) 232.CrossRefGoogle Scholar
  30. 24(a).
    W. Shockley, J. Appl. Phys., 9 (1938) 635;CrossRefGoogle Scholar
  31. (b).
    M.D. Skirkis and N. Holonyah, Jr., Am. J. Phys., 34 (1966) 943.CrossRefGoogle Scholar
  32. 25.
    M.B. Comisarow, J. Chem. Phys., 69 (1978) 4097.CrossRefGoogle Scholar
  33. 26.
    Motion of ions in a one-region trapped ICR cell has been discussed by T.E. Sharp, J.R. Eyler and E. Li, Int. J. Mass Spectrom. Ion Phys., 9 (1972) 421.Google Scholar
  34. 27.
    J.A. Zonneveld, “Automatic Numerical Integration”, Mathematisch Centrum Amsterdam, 1964Google Scholar
  35. 28.
    We estimate that the ionization efficiency for benzene at 20 eV is 20.5 positive ions per electron per cm per torr of pressure. This estimate was derived from the absolute value of 6.4 ions per electron per cm per torr for C2H2 (J.T. Tate and P.T. Smith, Phys. Rev., 39 (1932) 270) and the value of 3.2 for the relative ionization efficiency of C6H6 relative to C2H2 (CrossRefGoogle Scholar
  36. 28a.
    J.W. Otvos and D.P. Stevenson, J. Am. Chem. Soc, 78 (1956) 546.CrossRefGoogle Scholar
  37. 29.
    R.L. Hunter and R.T. Mclver, Jr., Anal. Chem., 51 (1979) 699.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Richard L. Hunter
    • 1
  • Robert T. McIverJr.
  1. 1.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations