FT ICR Spectrometry with a Superconducting Magnet

  • M. Allemann
  • Hp. Kellerhals
  • K. P. Wanczek
Part of the Lecture Notes in Chemistry book series (LNC, volume 31)


Since ICR spectrometry [1] was introduced in 1965 [2] great progress has been made in instrumentation. Among the most important new methods were: 1. Introduction of pulsed spectrometry with a trapped — ion analyzer cell [3] and 2. Fourier transform ICR spectrometry [4]. The early instruments utilized a magnetic field scan to obtain a mass spectrum. This has several disadvantages: The scan is slow, trapping efficiency and sensitivity are changing with magnetic field strength. The strength of the magnetic field is not well defined and its homogeneity is not high. Therefore a frequency scan at constant magnetic field is preferable. Once operating at constant magnetic field the use of superconducting high field magnets yields substantial improvements:
  1. 1.

    Very high resolution,

  2. 2.

    Large mass range

  3. 3.

    Very long trapping times

  4. 4.

    Capability of simple mass scale calibration stable for extended periods of time utilizing the great field stability of the superconducting magnet.



Magnetic Field Strength Constant Magnetic Field Transient Signal Frequency Synthesizer Trapping Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review cf. K.-P. Wanczek, Dyn. Mass Spectrom. 6(1981)14.Google Scholar
  2. 2.
    Chem. Eng. News 43(1965)155.Google Scholar
  3. 3.
    R.T. Mclver, Jr., Rev. Sci. Instrum. 41(1970)555.CrossRefGoogle Scholar
  4. 4.
    M.B. Comisarow and A.G. Marshall, Chem. Phys. Lett. 25(1974)282.CrossRefGoogle Scholar
  5. 5.
    M. Allemann, Hp. Kellerhals and K.-P. Wanczek, Chem. Lett. 75(1980)328.CrossRefGoogle Scholar
  6. 6.
    M.B. Comisarow, Int. J. Mass. Spectrom. Ion Phys. 37(1981)251.CrossRefGoogle Scholar
  7. 7.
    K.-P. Wanczek, Z. Naturforsch. 30a(1975)329.Google Scholar
  8. 8.
    M. Allemann, Hp. Kellerhals and K.-P. Wanczek, Chem. Phys. Lett. 84(1981)547.CrossRefGoogle Scholar
  9. 9.
    H.G. Dehmelt and F.L. Walls, Phys. Rev. Lett. 21(1968)927.CrossRefGoogle Scholar
  10. 10.
    G. Graff, J. Kalinowsky and J. Traut, Z. Physik A297(1980)35.Google Scholar
  11. 11.
    M. Riggin, Intern. J. Mass Spectrom. Ion Phys. 22(1976)35.CrossRefGoogle Scholar
  12. 12.
    S.H. Lee, Dissertation, Frankfurt (1980).Google Scholar
  13. 13.
    S.H. Lee, K.-P. Wanczek and H. Hartmann, Adv. Mass. Spectrom. 8(1980)1645.Google Scholar
  14. 14.
    T.E. Sharp, J.R. Eyler and E. Li., Int. J. Mass Spectrom. Ion Phys. 9(1972)421.Google Scholar
  15. 15.
    M. Allemann,Dissertation, University Bremen, 1982.Google Scholar
  16. 16.
    J.M. Pendleburg, Rev. Sci. Instrum. 50(1979)535.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • M. Allemann
    • 1
  • Hp. Kellerhals
    • 1
  • K. P. Wanczek
    • 2
  1. 1.Spectrospin AGFällandenSwitzerland
  2. 2.Institute of Theoretical and Physical ChemistryUniversity of FrankfurtGermany

Personalised recommendations