Skip to main content

Tragfähigkeit von Platten und Schalen aus bewehrtem Beton mit geometrischen und physikalischen nichtlinearen Effekten

  • Chapter
Book cover Finite Elemente Programme für Platten und Schalen
  • 156 Accesses

Zusammenfassung

Im letzten Kapitel wurde die numerische Voraussage der Tragfähigkeit von Schalenstrukturen betrachtet, wobei die Materialnichtlinearität in dem klassisch elasto-plastischen Verhalten bestand. In diesem Kapitel werden die Techniken und das Computerprogramm wie zuvor beschrieben auf den speziellen Fall des bewehrten Beton erweitert. Es werden Effekte der geometrischen Nichtlinearität berücksichtigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. ASCE Committee on concrete and masonry structures, Task Committee on Finite Element Analysis of Reinforced Concrete Structures: A State-of-the-Art Report on Finite Element Analysis of Reinforced Concrete Structures, ASCE Spec. Pub. 1981.

    Google Scholar 

  2. Schnobrich, W.C.: Behaviour of reinforced concrete structures predicted by the finite element method.Computers & Structures, Vol.7, 1977, pp.365–376.

    Article  Google Scholar 

  3. Argyris, J.H.; Faust, G.; Szimnat, J.; Warnke, E.P. and William, K.J.: Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nuclear Engineering and Design, 28, 1974, pp.42–75.

    Article  Google Scholar 

  4. Bergan, P.G. and Holand, I.: Nonlinear finite element analysis of concrete structures. Computer methods in Applied Mechanics and Engineering, 17/18, 1979, pp.443–467.

    Article  Google Scholar 

  5. Gerstle, K.H.: Material modelling of reinforced concrete. Introductor Report, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft, Volume-Band 33, 1981, pp.41–63.

    Google Scholar 

  6. Ngo, D. and Scordelis, A.C.: Finite element analysis of reinforced concrete beams. American Concrete Institute Journal, V.64, No.3, March 1967.

    Google Scholar 

  7. Cedolin, L. and Deipoli, S.: Finite element studies of shear-critical R/C beams. ASCE Journal of the Engineering Mechanics Division, Vol.103, No. EM3, June 1977, pp. 395–410.

    Google Scholar 

  8. Fardis, M.N. and Buyukozturk, O.: Shear stiffness of concrete by finite elements. ASCE Journal of the Structural Division, Vol.106, No.ST6, June 1980, pp.1311–1327.

    Google Scholar 

  9. Bazant, Z.P. and Cedolin, L.: Fracture mechanics of reinforced concrete. ASCE Journal of Eng. Mech. Division, Vol.106, No.EM6, December 1980, pp. 1287–1306.

    Google Scholar 

  10. Lin, C.S.: Nonlinear analysis of reinforced concrete slabs and shells. Thesis, Ph.D., UC-SESM 73–7, University of California, April 1973.

    Google Scholar 

  11. Hand, F.R.; Pecknold, D.A. and Schnobrich, W.C.: Nonlinear layered analysis of RC plates and shells. ASCE Journal of Structural Division Vol.99, No. ST7, July 1973, pp.1491–1505.

    Google Scholar 

  12. Mueller, G.: Numerical problems in nonlinear analysis of reinforced concrete. Report No. UC-SESM 77–5, University of California, Berkeley, September 1977.

    Google Scholar 

  13. Rahman, H.H.A.: Computational models for the nonlinear analysis of reinforced concrete flexural slab systems, Thesis Ph.D., C/PH/66/82, University of Wales, May 1982.

    Google Scholar 

  14. Kupfer, H.; Hilsdorf, K.H. and Rush, H.: Behaviour of concrete under biaxial stresses. Procedings, American Concrete Institute, Vol.66, No.8, August 1969, pp.656–666.

    Google Scholar 

  15. Mills, L.L. and Zimmerman, R.M.: Compressive strength of plain concrete under multiaxial loading conditions. ACI Journal, Proc. Vol.67, M-10, Oct.1970, pp. 802–807.

    Google Scholar 

  16. Gerstle, K.H. et al.: Behaviour of concrete under multiaxial stress states. ASCE Journal of Eng. Mech. Div. Vol. 106, No.EM 6, December 1980, pp.1383–1403.

    Google Scholar 

  17. Kupfer, H.B. and Gerstle, K.H.: Behaviour of concrete under biaxial stresses. ASCE Journal of the Eng. Mech. Div., Vol.99, No.EM4, August 1973, pp.853–866.

    Google Scholar 

  18. Liu, T.C.Y., Nilson, A.H. and Slate, F.O.: Biaxial stress-stain relations for concrete. ASCE Journal of the Structural Division, Vol.98, No.ST5, May 1972, pp.1025–1034.

    Google Scholar 

  19. Cedolin, L.; Crutzen, Y.R.J. and Deipoli, S.: Triaxial stress-strain relationship for concrete. ASCE Journal of the Eng. Mech. Div. Vol.103, No.EM3, June 1977, pp.423–439.

    Google Scholar 

  20. Gerstle, K.H.: Simple formulation of biaxial concrete behaviour. ACI Journal, Vol.78, Jan.-Feb. 1981, pp.62–68

    Google Scholar 

  21. Lin, C.S. and Scordelis, A.C.: Nonlinear analysis of RC shells of general form. ASCE Journal of the Structural Division, Vol.101, No.ST3, March 1975, pp.523–538.

    Google Scholar 

  22. Chen, A.C.T. and Chen, W.F.: Constitutive relations of concrete. ASCE Journal of the Eng. Mech. Div. Vol.101, No.EM4, August 1975, pp.465–481.

    Google Scholar 

  23. Buyukozturk, O.: Nonlinear analysis of reinforced concrete structures. Computers and Structures, Vol.7, 1977, pp.149–156.

    Article  Google Scholar 

  24. Bazant, Z.P. and Bhat, P.D.: Endochronic theory of inelasticity and failure of concrete. ASCE Journal of the Eng. Mech. Div., Vol.102, No.EM4, August 1976, pp.701–722.

    Google Scholar 

  25. Bazant, Z.P. and Kim, S.S.: Plastic-Facturing theory for concrete. ASCE Journal of the Eng. Mech. Div., Vol.105, No.EM3, June 1979, pp.407–428.

    Google Scholar 

  26. Jofriet, J.C. and Mcneice, G.M.: Finite element analysis of reinforced concrete slabs. ASCE Journal of the Structural Division, Vol.97, No.ST3, March 1971, pp.785–806.

    Google Scholar 

  27. Hand, F.R.; Pecknold, D.A. and Schnobrich, W.C.: A layered finite element nonlinear analysis of reinforced concrete plates and shells. Civil Eng. Studies, SRS No.389, University of Illinois, Urbana, Illinois, August 1972.

    Google Scholar 

  28. Hinton, E.; Rahman, H.H.A. and Zienkiewicz, O.C.: Computational models for reinforced concrete slab systems. IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Final Report, Vol.-Band 34, Delft 1981, pp.303–313

    Google Scholar 

  29. Ottosen, N.S.: A failure criterion for concrete. ASCE Journal of Eng. Mech. Div., Vol.103, No.EM4, August 1977, pp.527–535.

    Google Scholar 

  30. Wastiels, J.: Behaviour of concrete under multiaxial stresses — a review. Cement and Concrete Research, Vol.9, 1979, pp.35–44.

    Article  Google Scholar 

  31. Wastiels, J.: Failure criteria for concrete subjected to multiaxial stresses. Lecture held at University of Illinois at Chicago Circle, Department of Materials Engineering, May 27, 1981.

    Google Scholar 

  32. Chen, W.F.: Plasticity in Reinforced Concrete. McGraw-Hill Book Company, 1982.

    Google Scholar 

  33. Andenaes, E.; Gerstle, K. and Ko, H.Y.: Response of mortar and concrete to biaxial compression. ASCE Journal of Eng. Mech. Div., Vol.103, No.EM4, August 1977, pp.515–526.

    Google Scholar 

  34. Owen, D.R.J. and Hinton, E.: Finite Elements in Plasticity — Theory and Practice. Pineridge Press, Swansea, U.K., 1980.

    MATH  Google Scholar 

  35. Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, Third edition, 1977.

    MATH  Google Scholar 

  36. Gilbert, R.I. and Warner, R.F.: Tension stiffening in reinforced concrete slabs. ASCE Journal of the Structural Division, Vol.104, No.ST12, December 1978, pp.1885–1900.

    Google Scholar 

  37. Goto, Y.: Cracks formed in concrete around deformed tension bars. ACI Journal, April 1971, pp.244–251.

    Google Scholar 

  38. Cope, R.J.; Rao, P.V.; Clark, L.A. and Norris, P.: Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs. Numerical Meth. for Nonlinear Problems, Vol.1, Pineridge Press, Proceedings of the International Conference held at University College of Swansea, 2–5 September 1980, pp.457–470.

    Google Scholar 

  39. Fenwick, R.C. and Paulay, T.: Mechanics of shear resistance of concrete beams. ASCE Journal of the Structural Division, Vol.94, No.STIO, October 1968, pp.2325–2350.

    Google Scholar 

  40. Hofbeck, J.A.; Ibrahim, I.O. and Mattock, A.H.: Shear transfer in reinforced concrete. ACI Journal, February 1969, pp.119.128.

    Google Scholar 

  41. Hamadi, Y.D. and Regan, P.E.: Behaviour in shear of beams with flexural cracks. Magazine of Concrete Research, Vol.32, No.111, June 1980, pp.67–78.

    Article  Google Scholar 

  42. Ahmad, S.; Irons, B.M. and Zienkiewicz, O.C.: Analysis of thick and thin shell structures by curved finite elements. Int.J.Num.Meth. in Engng. Vol.2, 1970, pp.419–451.

    Article  Google Scholar 

  43. Owen, D.R.J, and Figueiras, J. A.: Anisotropic el asto-plastic finite element analysis of thick and thin plates and shells. Int. J. Num.Meth.Engng., Vol.19, 1983, pp.541–566.

    Article  MATH  Google Scholar 

  44. Floegl, H. and Mang, H.: On tension stiffening in cracked reinforced concrete slabs and shells considering geometric and physical nonlinearity. Inginieur-Archiv 51 pp.215–242, 1981.

    MATH  Google Scholar 

  45. Mehlhorn, G. and Klein, G.: Finite element analysis of reinforced concrete slabs and panels. Institut für Massinbau, Technische Hochschule Darmstadt.

    Google Scholar 

  46. Hughes, T.J.R.: Unconditionally stable algorithms for nonlinear heat conduction. Comp.Meth.in Applied mech. and Engng., Vol.10, 1977, pp.135–139.

    Article  Google Scholar 

  47. Bathe, K.J. and Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, New Jersey, USA, 1976.

    MATH  Google Scholar 

  48. Hogge, M.A.: Integration operators for first order linear matrix differential equations. Comp.Meth. in Applied Mech. and Engng., Vol.11, 1977, pp.281–294.

    Article  MathSciNet  MATH  Google Scholar 

  49. Owen, D.R.J, and Damjanic, F.: Reduced numerical integration in thermal transient finite element analysis. Computers and Structures (In press).

    Google Scholar 

  50. Damjanic, F. and Owen, D.R.J.: Practical considerations for thermal transient finite element analysis using isoparametric elements. Nuc.Eng. & Design, Vol.69, No.1, 1982, pp.109–126.

    Article  Google Scholar 

  51. Bresler, B. and Scordelis, A.C.: Shear strength of reinforced concrete beams. ACI Journal, Jan.1963.

    Google Scholar 

  52. Duddeck, H.; Griebenow, G. and Shaper, G.: Material and time dependent nonlinear behaviour of cracked reinforced concrete slabs, in Nonlinear Behaviour of Reinforced Concrete Spatial Structures, Vol.1, Preliminary Report IASS Symposium held in Darmstadt, Eds. Mehlhom, G.; Ruhle, H. and Zerna, W., Werner-Verlag Düsseldorf, July 1978, pp.101–113.

    Google Scholar 

  53. Taylor, R.; Maher, D.R.H. and Hayes, B.: Effect of the arrangement of reinforcement on the behaviour of reinforced concrete slabs. Magazine of Concrete Research, Vol.18, No.55, June 1966.

    Google Scholar 

  54. Hedgren, A.W. and Billington, D.P.: Mortar model test on a cylindrical shell of varying curvature and thickness. ACI Journal, February 1967.

    Google Scholar 

  55. Hodge, P.G. and White, G.N.: A quantitive comparison of flow and deformation theories of plasticity. J.Appl.Mech., Vol.17, June 1950, pp.180–184.

    MathSciNet  MATH  Google Scholar 

  56. Arnesen, A.; Sorensen, S.I. and Bergan, P.G.: Onlinear analysis of reinforced concrete. Computers and Structures, Vol.12, 1980, pp.571–579.

    Article  MATH  Google Scholar 

  57. Mang, H.A. and Floegl, H.: Tension stiffening concept for reinforced concrete surface structures. IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Final Report, Delft, June 1981, pp.351–369.

    Google Scholar 

  58. ACI Standard 318–77: Building Code Requirements for Reinforced Concrete. American Concrete Institute, Detroit, 1977.

    Google Scholar 

  59. Lin, G.Q.; Owen, D.R.J.: Ultimate load behaviour of reinforced concrete plates and shells under dynamic transient loading. Int. J. Num. Meth. Eng. 22 (1986) 189–208

    Article  Google Scholar 

  60. Hinton, E.: Dynamic Analysis of Plates and Shells, Swansea, Pineridge Press 1988

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Owen, D.R.J., Figueiras, J.A. (1990). Tragfähigkeit von Platten und Schalen aus bewehrtem Beton mit geometrischen und physikalischen nichtlinearen Effekten. In: Hinton, E., Owen, D.R.J., Krause, G. (eds) Finite Elemente Programme für Platten und Schalen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50182-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50182-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51546-3

  • Online ISBN: 978-3-642-50182-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics