Advertisement

Computer Aided Protein Design: Three Dimensional Model Building of the Saruplase Structure

  • W. Straßburger
  • W. Winter
  • G. J. Steffens
  • W. A. Günzler
  • L. Flohé
Conference paper
  • 31 Downloads

Abstract

Modelling studies of the three-dimensional structures of the saruplase-domains are presented. The model of the N-terminal EGF-like domain highlights amino acids residues which might be involved in interactions with saruplase specific receptors. The distribution of charged residues on the surface of the kringle-model is different from other kringle- structures. The model structure of the catalytic serine-protease domain points to surface loops, which surround the active site and may participate in interactions with plasminogen. Starting from the structures of the isolated domains a model for the entire enzyme is constructed which is compatible with experimental results.

Keywords

Molecular Dynamic Simulation Charge Amino Acid Similar Amino Acid Protease Domain Surface Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Steffens, W. A. Günzler, F. Ötting, E. Frankus and L. Flohé (1982) Hoppe-Seylers Z. Physiol. Chem. 363: 1043–1058Google Scholar
  2. 2.
    W. A. Günzler, G. J. Steffens, F. Ötting, G. Buse and L. Flohé (1982) Hoppe-Seylers Z. Physiol. Chem. 363: 133–141Google Scholar
  3. 3.
    W.E. Holmes, D. Pennica, M. Blaber, M.W. Rey, W.A. Günzler, G.J. Steffens and H.L. Heyneker (1985) Biotechnology 3: 923–929CrossRefGoogle Scholar
  4. 4.
    G. Vriend (1990) J. Mol. Graphics 8: 52–56Google Scholar
  5. 5.
    W. F. van Gunsteren and H.J.C. Berendsen (1987) GROMOS-Library, Biomos, Groningen, The NetherlandsGoogle Scholar
  6. 6.
    R. M. Cooke, A. J. Wilkinson, M. Baron, A. Pastore, M. J. Tappin, I. D. Campbell, H. Gregory and B. Sheard (1987) Nature 327: 339–341CrossRefGoogle Scholar
  7. 7.
    E. Appella, E. A. Robinson, S. J. Ullrich, M. P. Stoppelli, A. Corti, G. Cassani and F. Blasi (1987) J. Biol. Chemistry 262: 4437–4440Google Scholar
  8. 8.
    A. Tulinsky, C. H. Park and E. Skrzypczak-Jankum (1988) J. Mol. Biol. 202: 885–901Google Scholar
  9. 9.
    B. C. Mabbutt and R. J. P. Williams (1988) Eur. J. Biochem. 170: 539–548CrossRefGoogle Scholar
  10. 10.
    A. Tulinsky, C. H. Park, B. Mao and M. Llinas (1988) Proteins 3: 85–96CrossRefGoogle Scholar
  11. 11.
    W. Straßburger, A. Wollmer, J. E. Pitts, I. D. Glover, I. J. Tickle, T. L. Blundell, J. Steffens, W.A. Günzler, F. Ötting and L. Flohé (1983) FEBS 157: 219–223CrossRefGoogle Scholar
  12. 12.
    R. O. Oswald, M. J. Bogusky, M. Bamberger, R. A. G. Smith and C. M. Dobson (1989) Nature, 337: 579–582CrossRefGoogle Scholar
  13. 13.
    S. A. Cederholm-Williams personal communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • W. Straßburger
    • 1
  • W. Winter
    • 1
  • G. J. Steffens
    • 1
  • W. A. Günzler
    • 1
  • L. Flohé
    • 1
  1. 1.Center of ResearchGrünenthal GmbHAachenGermany

Personalised recommendations