Skip to main content

The Ocean Carbon Cycle and Climate Change: An Analysis of Interconnected Scales

  • Conference paper
Patch Dynamics

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 96))

Abstract

Many studies of patch dynamics develop from provocative observations: hence, the scales of interest are those at which observations were practical. If further work suggests that patchiness at scales outside the range observed may be important, then the observation capabilities may be expanded into these ranges of scales. Recently, oceanographers have taken on a daunting challenge where the choice of scale selection has been removed. The ocean is important to climate change and global warming—as a storer and transporter of heat and carbon—but our understanding of the operative processes is inadequate to make predictions with the required skill. We cannot choose the observational “window” where we are most capable: we must address all scales that contribute to the global climate. In particular, to assess the role of the marine ecosystem in the ocean carbon cycle, we have had initially to extrapolate to ocean basin scales (105 km) from, for example, a few tens of sediment traps (1 m diameter) or water samples (10 cm, based on a 1 L sample). How do we bridge over 9 orders of magnitude to address problems of global scale from water samples typically of 1 L volume?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostock ice core provides 160,000 year record of atmospheric CO2. Nature 329:408–414.

    Article  CAS  Google Scholar 

  • Berger, W.H., Y.S. Smetacek, and G. Wefer (eds.). 1989. Productivity of the Ocean: Present and Past, J. Wiley and Sons, New York, 471pp.

    Google Scholar 

  • Brewer, P.G. 1978. Direct observation of the oceanic CO2 increase. Geophys, Res. Lett. 5:997–1000.

    Google Scholar 

  • Broecker, W.S., and T.-H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690pp.

    Google Scholar 

  • Carpenter, E.J., and K. Romans. 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254:1356–1358.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G.-T., and F.J. Millero. 1979. Gradual increase of oceanic CO2. Nature 277:205–206.

    Article  CAS  Google Scholar 

  • Cox, M.D. 1985. An eddy-resolving general circulation model of the ventilated thermocline. J. Phys. Oceanogr. 15:1312–1324.

    Article  Google Scholar 

  • Dodimead, A.J., F. Favorite, and T. Hirano. 1963. Salmon of the North Pacific Ocean, Part II: Review of oceanography of the subarctic Pacific region. Int. North Pac. Fish Comm. Bull. 13, 195 pp.

    Google Scholar 

  • Fasham, M.J.R., H.W. Ducklow, and S.M. McKelvie. 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48:591–639.

    CAS  Google Scholar 

  • Gordon, A.L. 1986. Interocean exchange of thermocline water. J. Geophys. Res. 91:5037–5046.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 1990. Climate Change: The IPCC Scientific Assessment (Houghton, J.T., G.J. Jenkins, and J.J. Ephraums, eds.). Cambridge University Press, Cambridge, U.K., 365pp.

    Google Scholar 

  • Keeling, C.D., R.B. Bacastow, A.F. Carter, S.C. Piper, T.P. Whorf, M. Heimann, W.G. Mook, and H. Roeloffzen. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: D.H. Peterson (ed.). Aspects of Climate Variability in the Pacific and Western Americas, Geophysical Monographs of the American Geophysical Union 55, pp 165–236.

    Chapter  Google Scholar 

  • Longhurst, A.R. 1991. Role of the marine biosphere in the global carbon cycle. LimnoL and Oceanogr. 36: 1507–1526.

    Article  CAS  Google Scholar 

  • Moore, B., and B. Bolin. 1986. The oceans, carbon dioxide, and global change. Oceanus 29:9–15.

    Google Scholar 

  • Packard, T.T., M. Denis, M. Kodier, and P. Garfield. 1988. Deep ocean metabolic CO2 production: Calculations from ETS activity. Deep-Sea Res. 35:371–382.

    Article  CAS  Google Scholar 

  • Poisson, A., and C.-T. A. Chen. 1987. Why is there little anthropogenic CO2 in the Antarctic Bottom Water? Deep-Sea Res, 34:1255–1275.

    Article  CAS  Google Scholar 

  • Ramanathan, V., R.J. Cicerone, H.B. Singh, and J.T. Kiehl. 1985. Trace gas trends and their potential role in climatic change. J. Geophys. Res, 90:5547–5566.

    Article  CAS  Google Scholar 

  • Rossby, H.T., S.C. Riser, and A.J. Mariano. 1983. The western North Atlantic — a Lagrangian viewpoint. In: A.R. Robinson (ed.). Eddies in Marine Science. Berlin, Springer-Verlag, pp. 66–91.

    Google Scholar 

  • Sarmiento, J.L., 1986. Three-dimensional ocean models for predicting the distribution of CO2 between the ocean and the atmosphere. In: J.R. Trabalka and D.E. Reichle (eds.). The Changing Carbon Cycle. Springer- Verlag, New York. pp. 279–294.

    Google Scholar 

  • Sarmiento, J.L., M.J.R. Fasham, R. Slater, J.R. Toggweiler, and H.W. Ducklow. In press. The role of biology in the chemistry of CO2 in the ocean. In: M. Farrell (ed.). Chemistry of the Greenhouse Effect. Lewis Publ., New York.

    Google Scholar 

  • Scientific Committee on Oceanic Research. 1990. The Joint Global Ocean Flux StudyVm-JGOFS—Science Plan, JGOFS Rept. 5, SCOR, ICSU, Halifax, Canada, 61pp.

    Google Scholar 

  • Semtner, A.J., Jr., and R. M. Chervin. 1988. A simulation of the global ocean circulation with resolved eddies. J. Geophys. Res. 93:15502–15522.

    Article  Google Scholar 

  • Steele, J.H. 1989. The message from the oceans. Oceanus 32(2):5–9.

    Google Scholar 

  • Sugimura, Y., and Y. Suzuki. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved orgainc carbon in seawater by direct injection of liquid samples. Mar. Chem, 24:105–131.

    Article  CAS  Google Scholar 

  • Tabata, S. 1975. The general circulation of the Pacific Ocean and a brief account of the oceanographic structure of the North Pacific Ocean, Part I — Circulation and volume transports. Atmosphere 13:133–168.

    Google Scholar 

  • Takahashi, T., W.S. Broecker, and S. Langer. 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90:6907–6924.

    Article  CAS  Google Scholar 

  • Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric carbon dioxide budget. Science 247:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, R.E., P.H. LeBlond, and W.J. Emery. 1990. Analysis of deep-drogued satellite-tracked drifter measurements in the northeast Pacific. Atmosphere-Ocean 28:409–443.

    Article  Google Scholar 

  • Toggweiler, J.R. 1989. Is the downward dissolved organic matter (DOM) flux important in carbon transport? In: W.H. Berger, V.S. Smetacek and G. Wefer (eds.). Productivity of the Ocean: Present and Past. J. Wiley and Sons, New York, pp. 65–85.

    Google Scholar 

  • Webb, D.J., et al. (“The FRAM Group”). 1991. An eddy-resolving model of the southern OCEAN, EOS — trans. Am. Geophys. Union 72:169.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denman, K.L. (1993). The Ocean Carbon Cycle and Climate Change: An Analysis of Interconnected Scales. In: Levin, S.A., Powell, T.M., Steele, J.W. (eds) Patch Dynamics. Lecture Notes in Biomathematics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50155-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50155-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56525-3

  • Online ISBN: 978-3-642-50155-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics