Pattern Formation in Tissue Interaction Models

  • J. D. Murray
  • G. C. Cruywagen
  • P. K. Maini
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 100)


Embryogenesis depends on a series of processes which generate specific patterns at each stage of development. For example, gastrulation, chondrogenesis, formation of scale, feather and hair primordia all involve major symmetry breaking. These ubiquitous spatial pattern formation requirements depend on specific pattern generation mechanisms which are still unknown. They are the subject of much research both theoretical and experimental. In the case of integumental patterns, for example, we do not in general even know when in development the pattern is actually formed. This was the key question studied by Murray et al. (1990) in a recent theoretical and experimental paper on alligator (Alligator missippiensis) stripes.


Pattern Formation Dermal Cell Tissue Interaction Dorsal Midline Chemotaxis Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bard, J.B.L. (1981). A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol., 93, 363–385.MathSciNetCrossRefGoogle Scholar
  2. Chuong, C.-M., Edelman, G.M. (1985a). Expression of cell adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers. J. Cell Biol., 101, 1009–1026.CrossRefGoogle Scholar
  3. Chuong, C.-M., Edelman, G.M. (1985b). Expression of cell adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J. Cell Biol., 101, 1027–1043.CrossRefGoogle Scholar
  4. Cocho, G., Perez-Pascual, R., Ruis, J.L. (1987). Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation. J. Theor. Biol., 125, 419–435.CrossRefGoogle Scholar
  5. Cruywagen, G.C., Maini, P.K., Murray, J.D. (1994). Travelling waves in a tissue interaction model for skin pattern formation IMA J. Maths. Appl. in Medic, and Biol. (in press).Google Scholar
  6. Cruywagen, G.C., Murray, J.D. (1992). On a tissue interaction model for skin pattern formation. J. Nonlinear Sci., 2, 217–240.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Davidson, D. (1983a). The mechanism of feather pattern development in the chick. I. The time determination of feather position. Yevgeny B. Karasik Dept. of Computer Science Tel Aviv Univ. J. Embryol. exp. Morph., 74, 245–259.Google Scholar
  8. Davidson, D. (1983b). The mechanism of feather pattern development in the chick. II. Control of the sequence of pattern formation. J. Embryol. exp. Morph., 74, 261–273.Google Scholar
  9. De Kepper, P., Castets, V., Dulos, E., Boissonade, J. (1991). Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D, 49, 161–169.CrossRefGoogle Scholar
  10. Dhouailly, D. (1973). Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. J. Embryol. exp. Morph., 30, 587–603.Google Scholar
  11. Dhouailly, D. (1975). Formation of cutaneous appendages in dermo-epidermal recombination between reptiles, birds and mammals. Wilhelm Roux Arc. EntwMech. Org., 177, 323–340.CrossRefGoogle Scholar
  12. Dhouailly, D., Maderson, P.F.A. (1984). Ultrastructural observations on the embryonic development of the integument of Lacerta muralis (Lacertilia, Reptilia). J. Morph., 179, 203–228.CrossRefGoogle Scholar
  13. Edelman, G.M. (1986). Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol., 2, 81–116.CrossRefGoogle Scholar
  14. Edmund, A.G. (1969). Dentition. In: Biology of the Reptilia. (eds. Bellairs, A.A. & Parsons, T.S.). Academic Press: London.Google Scholar
  15. Ferguson, M.W.J. (1985). The reproductive biology and embryology of crocodilians. In: Biology of Reptilia. Vol. 14 Development A. (eds Gans, C., Billet, F., Maderson, P.F.A.) 329–491. Wiley: New York.Google Scholar
  16. Gallin, W.J., Chuong, C.-M., Finkel, L.H., Edelman, G.M. (1986). Antibodies to liver cell adhesion molecules perturb inductive interactions and alter feather pattern and structure. Proc. Natl. Acad. Sci. USA., 83, 8235–8239.CrossRefGoogle Scholar
  17. Gerber, A. (1939). Die embryonale und postembryonale Pterylose der Alectromorphae. Rev. Suisse Zool., 46, 161–324.Google Scholar
  18. Gilbert, S.F. (1988) Development Biology. 2nd edn. Sinauer Associates, Inc: Sunderland.Google Scholar
  19. Grumet, M., Edelman, G.M. (1988). Neuron-glia cell adhesion molecules interact with neurons and astroglia via different binding mechanisms. J. Cell Biol., 106, 487–503.CrossRefGoogle Scholar
  20. Landau, L. D., Lifshitz, E. M. (1970). Theory of Elasticity. 2nd ed., Pergamon: New York.Google Scholar
  21. Leviton, A. E., Anderson, S. C. (1984). Description of a new species of Cyrtodactylus from Afghanistan with remarks on the status of Gymnodactylus longpipes and Cytrodactylus fedtschenkoi. J. Herp., 18, 270–276.CrossRefGoogle Scholar
  22. Maderson, P.F.A. (1965a). The embryonic development of the squamate integument. Acta Zool., 46, 275–295.CrossRefGoogle Scholar
  23. Maderson, P.F.A. (1965b). The structure and development of the squamate epidermis. In: Biology of the Skin and Hair Growth, (eds. Lyne, A.G. & Short, B.F.) Sydney: Angus and Robertson.Google Scholar
  24. Maderson, P.F.A. (1985). Some developmental problems of the reptilian integument. In: Biology of Reptilia. Vol. 14 Development A. (eds Gans, C., Billet, F., Maderson, P.F.A.) 523–598. Wiley: New York.Google Scholar
  25. Maini, P.K., Myerscough, M.R., Murray, J.D., Winters, K.H. (1991). Bifurcating spatially heterogeneous solutions in a Chemotaxis model for biological pattern formation. Bull Math. Biol., 53, 701–719.zbMATHGoogle Scholar
  26. McKeehan, M.S. (1951). Cytological aspects of embryonic lens induction in the chick. J. exp. Zool., 117, 31–64.CrossRefGoogle Scholar
  27. Mooney, J.D., Nagorcka, B.N. (1985). Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol., 115, 229–317.MathSciNetCrossRefGoogle Scholar
  28. Murray, J.D. (1981a). A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol., 88, 161–199.CrossRefGoogle Scholar
  29. Murray, J.D. (1981b). On pattern formation mechanisms for Lepidopteran wing patterns and mammalian coat markings. Phil Trans. Roy. Soc. Lond., B295, 473–496.Google Scholar
  30. Murray, J.D. (1989). Mathematical Biology. Springer Verlag: Heidelberg.zbMATHGoogle Scholar
  31. Murray, J.D., Deeming, D.C., Ferguson, M.W.J. (1990). Size dependent pigmentation pattern formation in embryos of Alligator Mississipiensis: time of initiation of pattern generation mechanism.Proc. Roy. Soc, B239, 279–293.Google Scholar
  32. Murray, J.D., Oster, G.F. (1984). Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol., 19, 265–279.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Murray, J.D., Myerscough, M.R. (1991). Pigmentation pattern formation on snakes. J. Theor. Biol., 149, 339–360.CrossRefGoogle Scholar
  34. Murray, J.D. (1993). Complex pattern formation and tissue interaction. In: Proceedings 1st European Conference on the Applications of Mathematics to Medicine & Biology (1990) (eds. Demongeot, J., Capasso, V.) pp. 495–506, Wuerz Publishing: Winnipeg.Google Scholar
  35. Myerscough, M. R., Murray, J.D. (1992). Analysis of propagating pattern in a Chemotaxis system. Bull Math. Biol., 54, 77–94.zbMATHGoogle Scholar
  36. Nagorcka, B. N. (1984). Evidence for a reaction-diffusion system in the formation of hair fibres. Biosystems, 16, 323–332.CrossRefGoogle Scholar
  37. Nagorcka, B. N. (1986). The role of a reaction-diffusion system in the initiation of skin organ primordia. I. The first wave of initiation. J. Theor. Biol., 121, 449–475.CrossRefGoogle Scholar
  38. Nagorcka, B.N., Mooney, J. D. (1982). The role of a reaction-diffusion system in the formation of hair fibres. J. Theor. Biol., 98, 575–607.MathSciNetCrossRefGoogle Scholar
  39. Nagorcka, B.N., Mooney, J. D. (1985). The role of a reaction-diffusion system in the initiation of primary hair follicles. J. Theor. Biol., 114, 243–272.MathSciNetCrossRefGoogle Scholar
  40. Nagorcka, B.N., Manoranjan, V.S., Murray, J.D. (1987). Complex spatial patterns from tissue interactions — an illustrative model. J. Theor. Biol., 128, 359–374.MathSciNetCrossRefGoogle Scholar
  41. Oster, G.F., Murray, J.D. (1989). Pattern formation models and developmental constraints. J. Exp. Zool., 251, 186–202.CrossRefGoogle Scholar
  42. Ouyang, Q., Swinney, H.L. (1991). Transition from a uniform state to hexagonal striped Turing patterns. Nature, 352, 610–612.CrossRefGoogle Scholar
  43. Pearson, M., Elsdale, T. (1979). Somitogenesis in amphibian embryos. I. Experimental evidence for an interaction between two temporal factors in the specification of the somite pattern. J. Embryol. exp. Morph., 51, 27–50.Google Scholar
  44. Rawles, M. (1963). Tissue interactions in scale and feather development as studied in dermal epidermal recombinations. J. Embryol. exp. Morph. 11, 765–789.Google Scholar
  45. Saxén, L., Lehtonen, E., Karkinen-Jääskeläinen, M., Nordling, S., Wartiovaara, J. (1976). Are morphogenetic tissue interactions mediated by transmissable signal substances or through cell contacts? Nature, 259, 662–663.CrossRefGoogle Scholar
  46. Sengel, P. (1976). Morphogenesis of Skin. Cambridge University Press: Cambridge.Google Scholar
  47. Shaw, L.J., Murray, J.D. (1990). Analysis of a model for complex skin patterns. SIAM J. Appl. Math., 50, 628–648.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Shaw, L.J. (1989) Tissue Interaction Models for Spatial Pattern and Form. D. Phil thesis, Oxford.Google Scholar
  49. Wessells, N.K. (1977). Tissue Interaction in Development. W. J. Benjamin: Menlo Park.Google Scholar
  50. Wolpert, L. (1981). Positional information and pattern formation. Phil. Trans. Roy. Soc. Lond., B295, 441–450.Google Scholar
  51. Zeeman, E.C. (1974). Primary and secondary waves in developmental biology. Lectures in Mathematics in the Life Sciences Vol. 4, Rhode Island: American Mathematical Society.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. D. Murray
    • 1
  • G. C. Cruywagen
    • 2
  • P. K. Maini
    • 2
  1. 1.Department of Applied Mathematics, FS-20University of WashingtonSeattleUSA
  2. 2.Centre for Mathematical BiologyMathematical InstituteOxfordEngland

Personalised recommendations