Skip to main content

Conservation and Spatial Structure: Theoretical Approaches

  • Conference paper
Book cover Frontiers in Mathematical Biology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 100))

Abstract

One of the most important challenges facing ecologists over the next decades is to help with the conservation of endangered species and ecosystems. As has been recognized increasingly within ecology in general, and in conservation in particular, meeting these challenges will require including the role of spatial structure in the models that are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andow, D.A., Kareiva, P.M., Levin, S.A., Okubo, A.: Spread of invading organisms. Landscape Ecology 4 (1990) 177–188.

    Article  Google Scholar 

  2. Czaran, T., Bartha, S.: Spatiotemporal dynamic models of plant populations and communities. Trends in Ecology & Evolution 7 (1992) 38–42.

    Article  Google Scholar 

  3. Durrett, R., Levin, S.: Stochastic spatial models: a user’s guide to ecological applications. Philosophical Transactions of the Royal Society of London, Series B 343 (1994) 329–350.

    Article  Google Scholar 

  4. Fisher, R.A.: The wave of advance of advantageous genes. Annals of Eugenics (London) 7 (1937) 355–369.

    Article  Google Scholar 

  5. Gyllenberg, M., Hanski, I.: Single-species metapopulation dynamics: a structured model. Theoretical Population Biology 42 (1992) 35–61.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hanski, I. Single-species metapopulation dynamics — concepts, models and observations. Biological Journal of the Linnean Society. 42 (1991) 17–38.

    Article  Google Scholar 

  7. Hassell, M.P., Comins, H.N., May, R.M.: Spatial structure and chaos in insect population dynamics. Nature. 353 (1991) 255–258.

    Article  Google Scholar 

  8. Hastings, A.: Spatial heterogeneity and the stability of predator-prey systems. Theoretical Population Biology. 12 (1977) 37–48.

    Article  MathSciNet  Google Scholar 

  9. Hastings, A.: 1990. Spatial heterogeneity and ecological models. Ecology. 71 (1990) 426–428.

    Article  Google Scholar 

  10. Hastings, A.: 1991. Structured models of metapopulation dynamics. Biological Journal of the Linnean Society. 42 (1991) 57–71.

    Article  Google Scholar 

  11. Hastings, A.: Age dependent dispersal is not a simple process — density dependence, stability, and chaos. Theoretical Population Biology. 41 (1992) 388–400.

    Article  MATH  Google Scholar 

  12. Hastings, A.: Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations. Ecology. 74 (1993) 1362–1372.

    Article  Google Scholar 

  13. Hastings, A., Wolin, C. 1989. Within-patch dynamics in a metapopulation. Ecology. 70 (1989) 1261–1266.

    Article  Google Scholar 

  14. Kareiva, P.: Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia. 57 (1983) 322–327.

    Article  Google Scholar 

  15. Kierstead, H., Slobodkin, L.B.: The size of water masses containing plankton bloom. Journal of Marine Research. 12 (1953) 141–147.

    Google Scholar 

  16. Kot, M. Discrete-time travelling waves — ecological examples. Journal of Mathematical Biology. 30 (1992) 413–436.

    Article  MathSciNet  MATH  Google Scholar 

  17. Levin, S. A.: Dispersion and population interactions. American Naturalist. 108 (1974) 207–228.

    Article  Google Scholar 

  18. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America. 15 (1969) 237–240.

    Google Scholar 

  19. Mollison, D.: Spatial contact models for ecological and epidemic spread. Journal of the Royal Statistical Society. B39 (1977) 283–326.

    MathSciNet  Google Scholar 

  20. Murphy, D.D., Noon, B.R.: Integrating scientific methods with habitat planning: reserve design for Northern Spotted Owls. Ecological Applications. 2 (1992) 3–17.

    Article  Google Scholar 

  21. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, New York (1980).

    MATH  Google Scholar 

  22. Pulliam, H.R.: Sources, sinks, and population regulation. 132 (1988) 652–661.

    Google Scholar 

  23. Pulliam, H.R., Dunning, Jr., J.B., Liu, J.: Population dynamics in complex lan-scapes: a case study. Ecological Applications 2 (1992) 165–177.

    Article  Google Scholar 

  24. Quinn, J.F., Hastings, A.: Extinction in subdivided habitats. Conservation Biology 1 (1987) 198–208.

    Article  Google Scholar 

  25. Skellam, J. G.: Random dispersal in theoretical populations. Biometrika. 38 (1951) 196–218.

    MathSciNet  MATH  Google Scholar 

  26. Turing, A. M.: The chemical basis of morphogenisis. Phil. Trans. Roy. Soc. B. 237 (1952) 37–72.

    Article  Google Scholar 

  27. van den Bosch, F., Metz, J.A.J., Diekmann, O. The velocity of spatial population expansion. Journal Of Mathematical Biology. 28 (1990) 529–565.

    Article  MathSciNet  MATH  Google Scholar 

  28. van den Bosch, F., Hengeveld, R., Metz, J.A.J.: Analysing the velocity of animal range expansion. Journal of Biogeography. 19 (1992) 135–150.

    Article  Google Scholar 

  29. Weinberger, H.F.: Long time behavior of a class of biological models. SIAM Journal of Mathematical Analysis. 13 (1982) 353–396.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hastings, A. (1994). Conservation and Spatial Structure: Theoretical Approaches. In: Levin, S.A. (eds) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50124-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50124-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50126-5

  • Online ISBN: 978-3-642-50124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics