EXAFS and X-Ray Diffraction in Solutions

  • Giovanni Licheri
  • Gabriella Pinna
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 27)

Abstract

Aqueous solutions of electrolytes have been, among liquid systems, those most widely studied from a structural point of view, mainly because of the interest in the ionic hydration which is a central problem in chemical physics. The most widely used structural technique has been up to now X-ray diffraction which, in spite of its limitations when applied to non-crystalline materials, has provided, in recent years, important information about the structure of solutions [1–3]. The recent development of the EXAFS spectroscopy opens now new perspectives, so that it can be of interest to compare the two techniques in order to understand their capabilities in obtaining a reliable picture of the structural behaviour of aqueous solutions.

Keywords

Nickel Hydration Lithium Bromide Hexa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Caminiti, G. Licheri, G. Piccaluga, G. Pinna and M. Magini, Rev. Inorg. Chem., 1, 333 (1979).Google Scholar
  2. 2.
    J.E. Enderby and G.W. Neilson, in: “Water, a Comprehensive Treatise”, ed. by F. Franks, Vol. 6, Plenum Press, N.Y., 1979.Google Scholar
  3. 3.
    G. Palinkas and E. Kalman, in: “Diffraction Studies on Non-Crystalline Substances”, ed. by I. Hargittai and W.J. Orville-Thomas (Elsevier, Amsterdam, 1981).Google Scholar
  4. 4.
    A.H. Narten and H.A. Levy, Science, 167, 1521 (1970).Google Scholar
  5. 5.
    A.H. Narten and H.A. Levy, in: “Water, a Comprehensive Treatise”, ed. by F. Franks, Vol. 1 (Plenum Press, N.Y., 1972).Google Scholar
  6. 6.
    A. Bienenstock, this book.Google Scholar
  7. 7.
    P. Eisenberger, this book.Google Scholar
  8. 8.
    J. Waser and V. Schomaker, Rev. Mod. Phys., 25, 671 (1953).ADSMATHCrossRefGoogle Scholar
  9. 9.
    T.M. Hayes, J. Non-Cryst. Solids, 31, 57 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    T.M. Hayes, P.N. Sen and S.H. Hunter, J. Phys. C, 9, 4357 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    R.F. Pettifer, Proc. of the Daresbury Study Week-end 28–29 March (1981), DL/SCI/R 17.Google Scholar
  12. 12.
    S. Mobilio and L. Incoccia, LNF-82/44(P) Laboratori Naz. Frascati Internal Report (1982).Google Scholar
  13. 13.
    D.R. Sandstrom and H.W. Dodgen, J. Chem. Phys., 67, 473 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    D.R. Sandstrom, J. Chem. Phys., 71, 2381 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    G. Licheri, G. Paschina, G. Piccaluga, G. Pinna and G. Vlaic, Chem. Phys. Lett., 83, 384 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    W. Bol, G.J.A. Gerrits and C.L. van Panthaleon van Eck, J. Appl. Cryst., 3, 486 (1970).CrossRefGoogle Scholar
  17. 17.
    R. Caminiti, G. Licheri, G. Piccaluga and G. Pinna, Far. Disc. N° 64, 62 (1978).CrossRefGoogle Scholar
  18. 18.
    R. Caminiti, G. Licheri, G. Paschina, G. Piccaluga and G. Pinna, Z. Naturforsch., 35a, 1361 (1980).ADSGoogle Scholar
  19. 19.
    H. Ohtaki, T. Yamaguchi and M. Maeda, Bull. Chem. Soc. Japan, 49, 701 (1976).CrossRefGoogle Scholar
  20. 20.
    M. Magini, J. Chem. Phys., 74, 2523 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    M. Magini and G. Giubileo, Gazz. Chim. Ital., 111, 449 (1981).Google Scholar
  22. 22.
    D.R. Sandstrom and J.M. Fine, SSRL Rep. 78/09, 77 (1978).Google Scholar
  23. 23.
    T.I. Morrison, A.H. Reis, E. Gebert, L.E. Iton, G.D. Stucky and S.L. Suib, J. Chem. Phys., 72, 6276 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    T.K. Sham, J.B. Hastings and M.L. Perlman, Chem. Phys. Lett., 83, 391 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    T.I. Morrison, L.E. Iton, G.K. Shenoy, G.D. Stucky and S.L. Suib, J. Chem. Phys., 75, 4086 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    W. Bol and T. Weltzen, Chem. Phys. Lett., 49, 189 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    R. Caminiti, G. Licheri, G. Piccaluga and G. Pinna, Chem. Phys., 19, 371 (1977).CrossRefGoogle Scholar
  28. 28.
    R. Caminiti, G. Licheri, G. Piccaluga and G. Pinna, J. Chem. Phys., 65, 3134 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    M. Magini, J. Inorg. Nucl. Chem., 40, 43 (1978).CrossRefGoogle Scholar
  30. 30.
    R. Caminiti and M. Magini, Chem. Phys. Lett., 61, 40 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    A. Fontaine, P. Lagarde, D. Raoux, M.P. Fontana, G. Maisano, P. Migliardo and F. Wanderlingh, Phys. Rev. Lett., 41, 504 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc and P. Migliardo, J. Chem. Phys., 72, 3061 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    G. Galli, G. Maisano, P. Migliardo, C. Vasi and F. Wanderlingh, Solid State Comm., 42, 213 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    G.W. Neilson and J.E. Enderby, J. Phys. C 11, L 625 (1978).ADSCrossRefGoogle Scholar
  35. 35.
    J.E. Enderby and G.W. Neilson, Rep. Progr. Phys., 44, 593 (1981).ADSCrossRefGoogle Scholar
  36. 36.
    N.A. Hewish and J.E. Enderby, Phys. Rev. Lett., 48, 756 (1982).ADSCrossRefGoogle Scholar
  37. 37.
    M.P. Fontana, G. Maisano, P. Migliardo and F. Wanderlingh, J. Chem. Phys., 69, 676 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    G. Licheri, G. Pinna and G. Navarra, to be published.Google Scholar
  39. 39.
    F. Bigoli, A. Braibanti, A. Tiripicchio and M. Tiripicchio, Acta Cryst., B27, 1427 (1971).Google Scholar
  40. 40.
    M. Magini, G. Paschina and G. Piccaluga, J. Chem. Phys., 76, 1116 (1982).ADSCrossRefGoogle Scholar
  41. 41.
    R. Kleinberg, J. Chem. Phys., 50, 4690 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Giovanni Licheri
    • 1
  • Gabriella Pinna
    • 1
  1. 1.Istituto di Chimica Fisica e IndustrialeUniversità di CagliariCagliariItaly

Personalised recommendations