Equilibrium Shapes, Stability and Dynamical Behaviour of Liquid Captive Menisci under Gravitational, Centrifugal and Electrical Fields

  • A. Gañán
  • I. G. Loscertales
  • A. Barrero
  • H. González
  • A. Ramos
  • F. M. J. McCluskey
  • A. Castellanos
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

A linear analysis of the free oscillations of captive drops or bubbles surrounded by an immiscible liquid or gas undergoing rotation in the presence of gravity has been carried out. Using spectral analytical methods, the natural frequencies corresponding to the symmetric and non-symmetric vibration modes have been calculated for any combination of the Bond and Weber numbers. The method uses normal mode decomposition and Green’s function to reduce the linearized Navier-Stokes equations and boundary conditions to an eigenvalue problem. Both the Green’s function and normal velocities at the interface are expanded in the orthogonal functional space generated by the Sturm-Liouville problem associated with the homogeneous part of the interface equation. The effect on the vibration modes of the density and geometrical parameters of the captive drop and the surrounding medium has been analysed. The case ω = 0 which determines the stability boundaries has also been considered. It is shown that the elliptic vibration spectrum presents two different and unexpected features depending on the Weber number range and the geometrical parameters. Finally, experimental results for the no-rotation case have been obtained and they show a good agreement with the calculated frequencies.

Keywords

Reso Librium Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Myshkis, A.D.; Babskii, V.G.; Kopachevskii, N.D.; Slobozhanin, L.A.; Tyuptsov, A.D.: Low-gravity fluid mechanics. Berlín, Heidelberg: Springer Verlag 1987.CrossRefGoogle Scholar
  2. [2]
    Gaüñán, A.; Barrero, A. 1986. Equilibrium shapes and free vibrations of liquid captive drops. Physicochemical Hydrodynamics. (Ed. Velarde, M. G.). Plenum Press 1986, pp. 53–69.Google Scholar
  3. [3]
    Gaüñán, A.; Barrero, A.: Free oscillations of liquid captive drops. Microgravity Sci. Technol., III (2) (1990) pp. 70–86ADSGoogle Scholar
  4. [4]
    Gañán-Calvo, A. M.: Oscillations of liquid captive rotating drops. J. Fluid Mech 226 (1991) pp. 63–90.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    González, H.; McCluskey F. M. J.; Castellanos, A.; Barrero, A.: Stabilization of dielectric liquid bridges by electric fields in the absence of gravity. J. Fluid Mech., 206 (1989) pp. 545–561.ADSMATHCrossRefGoogle Scholar
  6. [6]
    Lam, H.: Hydrodynamics. Cambridge: Cambridge University Press 1932.Google Scholar
  7. [7]
    Rayleigh, J.W.: The theory of Sound. Dover 1945.Google Scholar
  8. [8]
    Greenspan, H.P.: The theory of rotating fluids. Cambridge University Press 1968.Google Scholar
  9. [9]
    Sanz, A.: The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156 (1985) pp. 101–140.ADSMATHCrossRefGoogle Scholar
  10. [10]
    González, H.; McCluskey, F. M. J.; Castellanos, A. and Gañán, A.: Small oscillations of liquid bridges subjected to a.c. fields, in Synergetics, Order and Chaos (Ed. Velarde, M.G.) Singapoore: World Scientific 1988.Google Scholar
  11. [11]
    Ramos, A. and Castellanos, A.: Shapes and stability of liquid bridges subjected to a.c. electric fields. J. Electrostat. (submitted 1991).Google Scholar
  12. [12]
    Martínez, I.; Perales, J. M.: Liquid bridge stability data. J. Crystal Growth, 78 (1986) pp. 369–378.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1992

Authors and Affiliations

  • A. Gañán
    • 1
  • I. G. Loscertales
    • 1
  • A. Barrero
    • 1
  • H. González
    • 2
  • A. Ramos
    • 2
  • F. M. J. McCluskey
    • 2
  • A. Castellanos
    • 2
  1. 1.Dpto. Ingeniería Energética y Mecánica de FluidosUniversidad de SevillaSpain
  2. 2.Dpto. Electrönica y ElectromagnetismoUniversidad de SevillaSpain

Personalised recommendations