Skip to main content

Reverse Genetics Approaches for Cloning RIL-1, a Major Locus Involved in Susceptibility to Leukemia

  • Conference paper
  • 93 Accesses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 137))

Abstract

The mechanism by which fractionated-x-irradiation (FXI) induces leukemia has been much debated. Kaplan and Brown (1952) first showed that fractionated doses of x-irradiation can cause leukemia in mice. Gross (1958) , and Lieberman and Kaplan (1959) , subsequently reported the transfer of neoplasia by radiation-induced leukemia virus, RadLV, obtained from FXI-induced leukemias. However, despite the identification of type-C ENA particles in FXI-induced leukemias and the demonstration that such particles can, when injected into young mice, cause lymphomas, several investigators have taken exception with the concept of a viral etiology for FXI-induced leukemia (Ihle et al., 1976, 1976a, 1978; Haran-Ghera 1977; Pazmino et al., 1978; Mayer and Dorsch-Hasler 1982) . The etiological mechanism(s) of this disease however remains unclear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari NMB, Meruelo D (1987) Murine thymomas induced by fractionated-x-irradiation have specific T cell receptor rearrangements and characteristics associated with day 15–16 thymocytes. Mol Cell Biol 7:4159–4168

    PubMed  CAS  Google Scholar 

  • Blin N, Stafford DW (1976) Isolation of high molecular weight DNA. Nucleic Acids Res 3:2303–2308

    PubMed  CAS  Google Scholar 

  • Botstein, D, White RL, Skolnick M, Davies, RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Gent 32:314–331

    CAS  Google Scholar 

  • Fournier REK, Moran RG (1983) Complementation mapping in microcell hybrids: localization of Fpgs and Ak-1 on Mus musculus chromosome 2. Somatic Cell Genetics 9:69–84

    Article  PubMed  CAS  Google Scholar 

  • Gross L (1958) Attempt to recover filterable agent from x-ray-induced leukemia. Acta Haematol (Basel) 19:353–361

    Article  CAS  Google Scholar 

  • Haran-Ghera N (1977) Target cells involved in radiation and radiation leukemia virus leukemogenesis. In JF Duplan, ed, “International Symposium on Radiation-induced leukemogenesis and related viruses” (INSERM Symposium No 4) . Elsevier North Holland Biomedical Press, Amsterdam, Holland, p 79–89

    Google Scholar 

  • Ihle JN (1978) Experimental models and conceptual approaches to studies of lymphomas and leukemia-etiology, biology and control. Sem Hematol 15:95–115

    CAS  Google Scholar 

  • Ihle JN, McEwan R, Bengali K (1976) Radiation leukemia in C57BL/6 mice. I. Lack of ecotropic virus in pathogenesis. J Exp Med 144:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • Ihle JN, Joseph DR, Pazmino NH (1976a) Radiation leukemia in C57BL/6 mice. II. Lack of serological evidence for the role of endogenous ecotropic virus in pathogenesis. J Exp Med 144:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Kaplan HS, Brown MB (1952) A quantitative dose-response study of lymphoid tumor development In irradiated C57 black mice. J Natl Cancer Inst 13:185–208

    PubMed  CAS  Google Scholar 

  • Killary AM, Fournier REK (1984) A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell 38:523–534

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, LM, Monaco, AP, Middlesworth, W, Ochs, HD, Latt, SA (1985) Specific cloning of DNA fragments absent from the DNA of a male patient with an X chromosome deletion. Proc Natl Acad Sci USA 82:4778–4782

    Article  PubMed  CAS  Google Scholar 

  • Lieberman M, Kaplan HS (1959) Leukemogenic activity of filtrates from radiation-induced lymphoid tumors of mice. Science 130:387–388

    Article  PubMed  CAS  Google Scholar 

  • Mayer A, Dorsch-Hasler K (1982) Endogenous MuLV infection does not contribute to onset of radiation or carcinogen-induced murine thymoma. Nature 295:253–255

    PubMed  CAS  Google Scholar 

  • Meruelo D, Offer M, Flieger N (1981) Genetics of susceptibility to radiation-induced leukemia. Mapping of genes involved to chromosome 1, 2, and 4 . Implications for a viral etiology in the disease. J Exp Med 154:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Meruelo D, Offer M, Rossomando A (1983) Induction of leukemia by both fractionated-x-irradiation and radiation leukemia virus involves loci in the chromosome 2 segment coding for H-30 — Agouti. Proc Natl Acad Sci USA 80:462–466

    Article  PubMed  CAS  Google Scholar 

  • Meruelo D, Rossomando A (1986) A molecular and genetic approach to understanding the mechnaisms by which fractionated x-irradiation induces leukemia in mice. Leuk Research 10:819–832

    Article  CAS  Google Scholar 

  • Meruelo D, Rossomando A, Scandalis S, DfEustachio P, Fournier REK, Roop DR, Saxe D, Blatt C, Nesbitt MN (1987) Assignment of the Ly-6--Ril-1--Sis--H-30--Pol5/Xmmv72--Ins-3--Ker-1--Int-1--Gdc-1 region to murine chromosome 15. Immunogenetics 25:361–372

    Article  PubMed  CAS  Google Scholar 

  • Pazmino NH, McEwan R, Ihle JN (1978) Radiation leukemia in C57BL/6 mice. III. Correlation of altered expression of terminal deoxynucleotidyl transferase to induction of leukemia. J Exp Med 148:1338

    Article  PubMed  CAS  Google Scholar 

  • Rossomando A, Meruelo D (1986) Viral sequences are associated with many histocompatibility genes. Immunogenetics 23:233–245

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Spira J, Babonits M, Weiner F, Ohno S, Wirschubski Z, Haran-Ghera N, Klein G (1980) Nonrandom chromosomal changes in the Thy-1 positive and the Thy-1 negative lymphomas induced by 7,12 demethyl benzantracene in SJL mice. Cancer Res 40:2609–2616

    PubMed  CAS  Google Scholar 

  • Wiener F, Babonits M, Haran-Ghera N, Klein G (1980) Non-random duplication of chromosome 15 in murine T cell leukemias: Further studies on translocation heterozygotes. Int J Cancer 26:661–668

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Amari, N.M.B., Scandalis, S., Zhang, D., Pampeno, C.L., Arant, S., Meruelo, D. (1988). Reverse Genetics Approaches for Cloning RIL-1, a Major Locus Involved in Susceptibility to Leukemia. In: Mock, B., Potter, M. (eds) Genetics of Immunological Diseases. Current Topics in Microbiology and Immunology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50059-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50059-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50061-9

  • Online ISBN: 978-3-642-50059-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics