Meso-Damage Theory

  • Wei Yang
  • W. B. Lee
Part of the Materials Research and Engineering book series (MATERIALS)

Abstract

Spectacular progresses have been achieved by damage mechanics during the past. decade, which upgrade it into a scientific discipline and one of the most active research frontiers in the failure theories of materials. The scope of nowadays damage mechanics theory encompasses researches originated from macroscopic, meso and microscopic levels, with mesa-damage theory playing a central role along the interface between solid mechanics and material sciences. The development of meso-damage theory opens a new dimension to mesoplasticity. A brief account is attempted here for this relatively modern topic, with attention focused on the basic, influential theories as well as some important applications to delineate various mechanical behavior of solid materials.

Keywords

Anisotropy Graphite Argon Brittle Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson, E.L., Trans. Amer. Inst. Min. Engrs., 74(1952), P.777.Google Scholar
  2. 2.
    Hull D., and Rimmer, D.E., Phil. Mag., 4(1959), p.673.CrossRefGoogle Scholar
  3. 3.
    Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids, 11(1963), p. 127.CrossRefGoogle Scholar
  4. 4.
    MeClintock, P.A., J. Appl. Mech., 35(1968), p.363.CrossRefGoogle Scholar
  5. 5.
    Rice, J.R. and Tracey, D.M., J. Mech. Phys. Solids, 17(1969), p.201.CrossRefGoogle Scholar
  6. 6.
    Budiansky, B. and O’Connell, R.J., Int. J. Solids Struct., 12(1976), p.81.CrossRefGoogle Scholar
  7. 7.
    Gerson A.L., Plastic flow and fracture behavior of ductile materials incorporating void nucleatioe, growth and interaction, Ph.D. Thesis, Brown Univ., (1975).Google Scholar
  8. 8.
    Gurson, A.L., J. Engng. Mater. & Tech., 99(1977), p.2.CrossRefGoogle Scholar
  9. 9.
    Tvergaard, V., Material failure from void growth to coalescense, The Danish Center for Applied Math. and Mech., Rep. No. S45, (1988).Google Scholar
  10. 10.
    Needleman, A., Computational micromechanics, Keynote Speech at ICTAM XVII, Grenoble, France, Aug. (1988).Google Scholar
  11. 11.
    Cocks, A.C.F. and Ashby, M.F., Progr. in Mater. Sci., 27(1982), p. 189.CrossRefGoogle Scholar
  12. 12.
    Ashby, M.F. and Dyson, B.F., Proc. of ICF6 Symp., vol.1, (1984), p.3.Google Scholar
  13. 13.
    Chuang, T.-J., Kagawa, K.I., Rice, J.R. and Sills, L.B., Acta Metall., 27(1979), p.265.CrossRefGoogle Scholar
  14. 14.
    Hutchinson, J.W., Acta Metall., 31(1983), p. 1079.CrossRefGoogle Scholar
  15. 15.
    Tvergaard, V., Acta Metall., 32(1984), p.1977.CrossRefGoogle Scholar
  16. 16.
    Kachanov, M.I., Mech. Mater., 1(1982), p.19.CrossRefGoogle Scholar
  17. 17.
    Kachanov, Mi., Mech. Mater., 1(1982), p.29.CrossRefGoogle Scholar
  18. 18.
    Nemat-Nasser, S., Sumi, Y. and Keer, L.M., Int. J. Solids Struct., 16(1980), p. 1017.CrossRefGoogle Scholar
  19. 19.
    Nemat-Nasser, S., J. Appl. Mech., 50(1983), p.1114.CrossRefGoogle Scholar
  20. 20.
    Bazant, Z.P., Appl Mech. Rev., 39(1986), p.675.CrossRefGoogle Scholar
  21. 21.
    Kracjnovic, D., J. Appl. Mech., 50(1983), p.355.CrossRefGoogle Scholar
  22. 22.
    Argon, A.S., Sources of Toughness in Polymers, MIT Report, (1988).Google Scholar
  23. 23.
    Hashin, Z., J. Appl. Mech., 54(1987), p.872.CrossRefGoogle Scholar
  24. 24.
    Dvorak, G.J., Laws, N. and Hejazi, M., J. Composite Mater., 19(1985), p.216.CrossRefGoogle Scholar
  25. 25.
    Bishop, J.F.W. and Hill, R., Phil. Mag., 42(1951), p.414.Google Scholar
  26. 26.
    Gurland, J., Acta Metall., 20(1972), p.735.CrossRefGoogle Scholar
  27. 27.
    Goods, S.H. and Brown, L.M., Acta Metall, 27(1979), p.1.CrossRefGoogle Scholar
  28. 28.
    Chu, C.C. and Needleman, A., J. Engng. Mat. and Tech., 102(1980), p.249.CrossRefGoogle Scholar
  29. 29.
    Argon, A.S., et al., Metall Trans., 6A(1975), p.815.Google Scholar
  30. 30.
    Needleman, A. and Rice, J.R., in Mechanics of Sheet Metal Forming, Kristinen, D.P. and Wang, N.-M. eds., (1978), p.237.CrossRefGoogle Scholar
  31. 31.
    Tvergaard, V., Int. J. Fracture, 17(1981), p.389.CrossRefGoogle Scholar
  32. 32.
    Tvergaard, V., Int. J. Fracture, 18(1982), p.237.Google Scholar
  33. 33.
    Tvergaard, V. and Needleman, A., Acta Metall, 32(1984), p. 157.CrossRefGoogle Scholar
  34. 34.
    Becker, R., Needleman, A., Richmond, O. and Tvergaard, V., J. Mech. Phys. Solids, 36(1988), p.317.CrossRefGoogle Scholar
  35. 35.
    Koplik, J. and Needleman, A., Int. J. Solids Struct., 24(1988), p.835.CrossRefGoogle Scholar
  36. 36.
    Yang, W., J. Mech. Phys. Solids, (1990), p.725.Google Scholar
  37. 37.
    Mear, M.E. and Hutchinson, J.W., Mech. Mater., 4(1985), p.395.CrossRefGoogle Scholar
  38. 38.
    Becker, R. and Needleman, A., J. Appl. Mech., 53(1986), p.491.CrossRefGoogle Scholar
  39. 39.
    Saje, M., Pan, J. and Needleman, A., Int. J. Fract., 19(1982), p.163.CrossRefGoogle Scholar
  40. 40.
    Bluhm, J.I. and Morrisey, R.J., Proc. 1st Int. Conf. Fracture, vol.3, (1966), p. 1739.Google Scholar
  41. 41.
    Needleman, A. and Tvergaard, V., J. Mech. Phys. Solids, 32(1984), p.461.CrossRefGoogle Scholar
  42. 42.
    Yamamoto, H., Int. J. Fracture, 14(1978), p.347.CrossRefGoogle Scholar
  43. 43.
    Aravas, N., J. Mech. Phys, Solids, 34(1986), p.55.CrossRefGoogle Scholar
  44. 44.
    Aravas, N. and McMeeking, R.M., J. Mech. Phys. Solids, 33(1985), p.25.CrossRefGoogle Scholar
  45. 45.
    Aoki, S., Kishimoto, K. and Sakata, M., J. Mech. Phys. Solids, 35(1987), p.371.CrossRefGoogle Scholar
  46. 46.
    Needleman, A. and Tvergaard, V., J. Mech. Phys. Solids, 35(1987), p. 151.CrossRefGoogle Scholar
  47. 47.
    Kachanov, L.M., Izv. Akad. Nauk. SSSR, No. 8, (1958), p.26.Google Scholar
  48. 48.
    Leckie, F.A. and Hayhurst, D.R., Acta Metall., 25(1977), p. 1059.CrossRefGoogle Scholar
  49. 49.
    Rabotnov, Yu.N., Proc. XII IUTAM Congr., Stanford, eds. by Hetenyi, M. and Vincenti, W.G., Springer, (1969), p.342.Google Scholar
  50. 50.
    Needleman, A. and Rice, J.R., Acta Metall, 28(1980), p.1315.CrossRefGoogle Scholar
  51. 51.
    Anderson, P.M. and Rice, J.R., Acta Metall., 31(1983), p.919.CrossRefGoogle Scholar
  52. 52.
    Dyson, B.F., Metal Sci., 10(1976), p.349.CrossRefGoogle Scholar
  53. 53.
    He, M.Y. and Hutchinson, J.W., J. Appl Mech., 48(1981), p.830.CrossRefGoogle Scholar
  54. 54.
    Rice, J.R., Acta Metall, 29(1981), p.675.CrossRefGoogle Scholar
  55. 55.
    Budiansky, B., Hutchinson, J.W. and Slutsky, S., in Mechanics of Solids, the Rodney Hill 60th Anniversary Volume, eds. by Hopkins, H.G. and Sewell, M. J., Pergamon Press, (1982), p. 13.Google Scholar
  56. 56.
    Yang, W. and Cheng, L., in Role of Plasticity and Damage Mechanics in Fracture of Solids, Proc. of FEFG, Nov. (1988), Tokyo, Japan, p.153.Google Scholar
  57. 57.
    Broberg, H., J. Appl Mech., 41(1974), p.809.CrossRefGoogle Scholar
  58. 58.
    Roussiler, G., Thesis of Ecole Polytech. Univ. Paris, (1979).Google Scholar
  59. 59.
    LeMaitre, J. and Dufailly, J., Third French Congr. on Mechanics, Grenoble, France, (1977).Google Scholar
  60. 60.
    Laws, N. and Brockenbrough, Int. J. Solids & Struct., 23(1987), p. 1247.CrossRefGoogle Scholar
  61. 61.
    Hoenig, A., Int. J. Solids Struct, 15(1979), p.137.CrossRefGoogle Scholar
  62. 62.
    Laws, N., Mech. Mater., 4(1985), p.209.CrossRefGoogle Scholar
  63. 63.
    Oda, M., Mech. Mater., 2(1983), p. 163.CrossRefGoogle Scholar
  64. 64.
    Kachanov, M.I., Proc. of ASCE, Engng. Mech. Div., 106(EM5)(1980), p. 1039.Google Scholar
  65. 65.
    Kanatani, K., Tech. Rep. of Comp. Sci., Gunma Univ., (1982).Google Scholar
  66. 66.
    Cowin, S.C., Mech. Mater., 4(1985), p.137.CrossRefGoogle Scholar
  67. 67.
    Yang, W., Proc. of ICAM, Beijing, (1989), p.959.Google Scholar
  68. 68.
    Horii, H. and Nemat-Nasser, S., J. Mech. Phys. Solids, 31(1983), p. 155.CrossRefGoogle Scholar
  69. 69.
    Yang, W. and Boehler, J.P., Int. J. Solids & Struct, 29(1992), p. 1307.CrossRefGoogle Scholar
  70. 70.
    Ortiz, M., Mech. Mater., 4(1985), p.67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Wei Yang
    • 1
  • W. B. Lee
    • 2
  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.Department of Manufacturing EngineeringHong Kong PolytechnicKowloonHong Kong

Personalised recommendations