Skip to main content

Plasticity for Crystalline and Geological Materials

  • Chapter
Mesoplasticity and its Applications

Part of the book series: Materials Research and Engineering ((MATERIALS))

  • 149 Accesses

Abstract

A majority of plastic deformations take the form of discrete crystalline slip, governed by the glide motion of dislocations along corresponding slip systems as elucidated in length in Chapter 4. A systematic study on plastic slip deformation should start from the simple case of single crystals, where the complications such as grain orientations and grain boundaries could be eliminated. Studies on slip deformation of single crystals was originated from the historic works of Taylor and Elam[l,2], in which plastic slip along various orientations was first observed and examined. The modern formulation on slip-induced plasticity was advanced by Hill[3], and by Hill and Rice[4] in which the constitutive law of crystalline plasticity were elaborated by the mathematical elegance. Comprehensive reviews on this research subject were provided by Asaro[5,6,7] where his contributions to crystalline plasticity were also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, G.I. and Elam, C.F., Proc. Roy. Soc. London, A102(1923), p.643,

    Google Scholar 

  2. Taylor, G.I. and Elam, C.F., Proc. Roy. Soc. London, A108(1925), p.28.

    Google Scholar 

  3. Hill, R., J. Mech. Phys. Solids, 14(1966), p.95.

    Article  CAS  Google Scholar 

  4. Hill, R. and Rice, J.R., J. Mech. Phys. Solids, 20(1972), p.401.

    Article  Google Scholar 

  5. Asaro, R.J., J. Appl. Mech., 50(1983), p.921.

    Article  Google Scholar 

  6. Asaro, R.J., in Adv. Appl. Mech., 23(1983), p.1.

    Article  Google Scholar 

  7. Asaro, R.J., Mech. Materials, 4(1985), p.343.

    Article  Google Scholar 

  8. Lee, E.H., J. Appl. Mech., 36(1969), p.1.

    Article  Google Scholar 

  9. Asaro, R.J. and Rice, J.R., J. Mech. Phys. Solids, 25(1977), p.309.

    Article  Google Scholar 

  10. Hill, R. and Havner, K.S., J. Mech. Phys. Solids, 30(1982), p.5.

    Article  CAS  Google Scholar 

  11. Needleroan, A., in Plasticity of Metals at Finite Strain, Lee, E.H. and Maltet, R.L. eds., (1981), p.387.

    Google Scholar 

  12. Sachs, G., Z. Ver. Dtsch. Ing., 72(1928), p.734.

    Google Scholar 

  13. Rice, J.R., in Const. Equat, in Plasticity, Argon, A.S. ed., (1975), p.23.

    Google Scholar 

  14. Taylor, G.I., J. Inst. Metals, 62(1938), p.218.

    Google Scholar 

  15. Bishop, J.F.W. and Hill, R., Phil. Mag., 42(1951), p.414.

    CAS  Google Scholar 

  16. Von Houtte, P. and Aemoudt, E., Zeit. for Metall., 66(1975), p.202.

    Google Scholar 

  17. Eshelby, J.D., Proc. Roy. Soc. London, A241(1958), p.376.

    Google Scholar 

  18. Mura, T., Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff Pub., (1987).

    Book  Google Scholar 

  19. Hershey, A.V., J. Appl. Mech,, 21(1954), p.236 and p.241.

    CAS  Google Scholar 

  20. Kröner, E., Acta Metall, 9(1961), p.155.

    Article  Google Scholar 

  21. Budiansky, B. and Wu, T.Y., Proc. 4th U.S. Nat. Congr. Appl. Mech., (1962), p.1175.

    Google Scholar 

  22. Hill, R., J. Mech. Phys. Solids, 13(1965), p.89 and p.213.

    Article  CAS  Google Scholar 

  23. Hutchinson, J.W., Proc. Roy. Soc. London, A319(1970), p.247.

    Google Scholar 

  24. Lin, T.H., J. Mech. Phys. Solids, 5(1957), p.143.

    Article  CAS  Google Scholar 

  25. Lin, T.H., in Adv. Appl. Mech., 11(1971), p.255.

    Article  Google Scholar 

  26. Lin, T.H., ASME Winter Annual Meeting, New Orleans, (1984).

    Google Scholar 

  27. Hutchinson, J.W., Proc. Roy. Soc. London, A348(1976), p.101.

    Google Scholar 

  28. Asaro, R.J. and Needleman, A., Acta Metall., 33(1985), p.923.

    Article  CAS  Google Scholar 

  29. Harren, S.V., Deve, H.E. and Asaro, R.J., Acta Metall, 36(1988), p.2435.

    Article  CAS  Google Scholar 

  30. Peirce, D., Asaro, R.J. and Needleman, A., Acta Metall, 31(1983), p.1951.

    Article  CAS  Google Scholar 

  31. Lamonds, J., M.S. Thesis of Brown Univ., June, (1983).

    Google Scholar 

  32. Rice, J.R., J. Appl. Mech., 37(1970), p.728.

    Article  Google Scholar 

  33. Nemat-Nasser, S., J. Appl Mech., 50(1983), p.1114.

    Article  Google Scholar 

  34. Lance, G.L. and Nemat-Nasser, S., Mech. Materials, 5(1986), p.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, W., Lee, W.B. (1993). Plasticity for Crystalline and Geological Materials. In: Mesoplasticity and its Applications. Materials Research and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50040-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50040-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50042-8

  • Online ISBN: 978-3-642-50040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics