Materials with Useful Mechanical Properties

  • Robert E. Newnham
Part of the Crystal Chemistry of Non-Metallic Materials book series (CRYSTAL, volume 2)


Inorganic solids are not very elastic. Cohesive strengths are typically 1% of the elastic modulus, which means that the solid elongates only a few percent before breaking. Elastic properties of oxides are nevertheless important in ceramic science and in the geosciences. Most minerals in the earth’s crust are oxides and their stiffness moduli bear special relevance to our understanding of rock mechanics and Scismic wave velocities. Recent developments in acousto-optics and surface waves have also generated interest in the elastic properties of oxides. New materials with unusual elastic behavior are needed for delay-lines and other electronic devices in which an electric signal is converted to an acoustic wave and subsequently re-converted to an electric signal. Elastic coefficients govern the velocity of the acoustic wave, and hence the transit time.


Slip System Force Constant Rayleigh Wave Cleavage Plane Elastic Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bechmann, R., Hearmon, R.F.S., Kurtz, S. K.: Landolt-Börnstein, New Series Group III, Vols. 1,2. Berlin-Heidelberg-New York: Springer 1966, 1969.Google Scholar
  2. 2.
    Simmons, G.: J. Grad. Res. Center, Southern Methodist University, 34,1 (1965).Google Scholar
  3. 3.
    Huntingdon, H.B.: Solid State Physics, Vol. 7, p. 214 (eds. F. Scitz and D. Turnbull). New York: Academic Press 1958.Google Scholar
  4. 4.
    Birch F.: J. Geophys. 4,295 (1961).CrossRefGoogle Scholar
  5. 5.
    Birch, F.: J. Geophys. Res. 66,2199 (1961).CrossRefGoogle Scholar
  6. 6.
    Simmons, G.: J. Geophys. Res. 69,1123 (1964).CrossRefGoogle Scholar
  7. 7.
    Pinnow, D.A.: Trans. I.E.E.E. QE-6, 223 (1970).Google Scholar
  8. 8.
    Meyer, A., Umar, I.H, Young, W.H.:Phys.Rev.B 4,3287(1971).CrossRefGoogle Scholar
  9. 9.
    Anderson, O., Nafe J. E.: J. Geophys. Res. 70, 3951 (1965).CrossRefGoogle Scholar
  10. 10.
    Gilman J. J.: The Physics and Chemistry of Ceramics, p.240 (ed. C. Klingsberg). New York: Gordon and Breach 1963.Google Scholar
  11. 11.
    Kittel, C.: Introduction to Solid State Physics, First Edition, p. 53. New York: John Wiley and Sons 1953.Google Scholar
  12. 12.
    Matossi F.: J. Chem. Phys. 17,679 (1949).CrossRefGoogle Scholar
  13. 13.
    Hidalgo, A., Serratosa, J. M.: Chem. Abstr. 50,10532gh (1956).Google Scholar
  14. 14.
    Nyquist, R.A., Kagel, R.O.: Infrared Spectra of Inorganic Compounds. New York: Academic Press 1971.Google Scholar
  15. 15.
    Wilson, E.B., Decius J.C., Cross, P.C: Molecular Vibrations. New York: McGraw-Hill Book Co. 1955.Google Scholar
  16. 16.
    Sutton, L.E.: Tables of interatomic distances and configuration in molecules and ions, Special publication II. London: The Chemical Society 1958.Google Scholar
  17. 17.
    Makashima, A., Mackenzie: J. Non-Cryst. Solids 12,35 (1973).CrossRefGoogle Scholar
  18. 18.
    Chung, D.H., Buessem, W.R.: Anisotropy in single-crystal refractory compounds, Vol. 2, p.217 (eds. F. Vahldiek and S.A. Mersol). New York: Plenum Press 1958.Google Scholar
  19. 19.
    Weidner, D. J., Simmons, G.: J. Geophys. Res. 77,826 (1972).CrossRefGoogle Scholar
  20. 20.
    Newnham, R.E., Yoon, H.S.: Mineral. Mag. 39, 78 (1973).CrossRefGoogle Scholar
  21. 21.
    Yoon, H.S., Newnham, R.E.: Acta Cryst. A 29, 507 (1973).CrossRefGoogle Scholar
  22. 22.
    Mcskimin, H.J., Andreatch, P., Thurston, R.N.: J. Appl. Phys. 36, 1624 (1965).CrossRefGoogle Scholar
  23. 23.
    Geiske, J.H., Barsch, G.R.: Phys. Stat. Sol. 29,121 (1968).CrossRefGoogle Scholar
  24. 24.
    Graham, E.K., Barsch, G.R.: J. Geophys. Res. 74, 5949 (1969).CrossRefGoogle Scholar
  25. 25.
    Carr, P.H., Devito, P. A., Szabo, T.L.: Trans. I.E.E.E. SU-19,357 (1972).Google Scholar
  26. 26.
    Megaw, H.: Mat. Res. Bull. 6,1007 (1971).CrossRefGoogle Scholar
  27. 27.
    Hummel, F. A.: J. Am. Ceram. Soc. 33,102 (1950).CrossRefGoogle Scholar
  28. 28.
    Taylor, D.: Mineral. Mag. 28, 593 (1972).CrossRefGoogle Scholar
  29. 29.
    Deer, W. A., Howie, R. A., Zussmann J.: Rock forming minerals, Vol. 4. New York: John Wiley and Sons. 1963.Google Scholar
  30. 30.
    Bell, R.O., Rupprecht, G.: Phys. Rev. 129,90 (1963).CrossRefGoogle Scholar
  31. 31.
    Axe J.D.: Trans. Am. Cryst. Assoc. 7, 89 (1971).Google Scholar
  32. 32.
    Price, C.C.: J. Chem. Ed. 50,744 (1973).CrossRefGoogle Scholar
  33. 33.
    Allcock, H.R.: Sci. Am. 230,66 (1974).CrossRefGoogle Scholar
  34. 34.
    Jensen, A. T.: Arkiv f. Kemi 30,165 (1968).Google Scholar
  35. 35.
    Plendl, J.N., Gielisse, P.J.:Zeit. Krist. 118, 404 (1963).CrossRefGoogle Scholar
  36. 36.
    Peters, C.G., Nefflen, K.F, Harris, F.K.: N.B.S. J. Res. 34, 587 (1945).Google Scholar
  37. 37.
    Bean, K.E, Gleim, P.S.: Proc. I.E.E.E. 57,1469 (1969).Google Scholar
  38. 38.
    Rabinowicz, E.: Science J. 6,45 (1970).Google Scholar
  39. 39.
    Jentgen, R.L.: Trans. I.E.E.E. PHP-7, 86 (1971).Google Scholar
  40. 40.
    Kronberg, M.L.: Acta Met. 5, 507 (1957).CrossRefGoogle Scholar
  41. 41.
    Kingery, W.D.: Introduction to ceramics. New York: John Wiley and Sons 1960.Google Scholar
  42. 42.
    Snow J.D., Heuer, A.H.: J. Am. Ceram. Soc. 56,153 (1973).CrossRefGoogle Scholar
  43. 43.
    Brooks, C.A., O’Neill J B, Redfern, B.A.W.: Proc. Roy. Soc. A 322, 73 (1971).CrossRefGoogle Scholar
  44. 44.
    Starkey J.: Contr. Min. and Pet. 19,133 (1968).CrossRefGoogle Scholar
  45. 45.
    Linde, J. O., Lindell, B.O., Stade, C.H.: Arkif Fysik 2,89 (1950).Google Scholar
  46. 46.
    Tosi, M.P.: Solid State Physics, Vol. 16, p. 1 (eds. F. Scitz and D. Turnbull). New York: Academic Press 1964.Google Scholar
  47. 47.
    Richman, M.H.: Trans. A. S. M. 59,374 (1966).Google Scholar
  48. 48.
    Field, J. E.: Contemp. Phys. 12,1 (1971).CrossRefGoogle Scholar
  49. 49.
    Bradt, R.C., Newnham, R.E., Biggers J.V.: Am. Mineralogist 58, 727 (1973).Google Scholar
  50. 50.
    Holliday, L.: Composite materials. New York: American Elsevier Publishing Co. 1966.Google Scholar
  51. 51.
    Broutman, L.J., Krock, R.H.: Modern composite materials. Reading, Mass.: Addison-Wesley Publishing Co. 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Robert E. Newnham
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations