Advertisement

Ergebnisse

Chapter
  • 45 Downloads

Zusammenfassung

Im vorangehenden Kapitel hatten wir anhand von ausgewählten Versuchsbeispielen gesehen, welche Möglichkeiten zur Anwendung der Gelchromatographie bestehen. Wir hatten uns dabei von methodischen Gesichtspunkten leiten lassen. So war die Auswahl der besprochenen Experimente weitgehend ohne Rücksicht auf die Stoffklasse der untersuchten Substanzen erfolgt. Wir konnten das deswegen tun, weil die Arbeitsmethoden für die verschiedenen Stoffklassen meistens die gleichen sind. In die Abschnitte über »Gelfiltration« und vor allem »Molekulargewichtsbestimmung« konnte ein Großteil der Ergebnisse dieser Arbeitsrichtungen bereits eingearbeitet werden. Der Abschnitt über »Gelchromatographie« enthält jedoch nur einen winzigen Bruchteil des in der (meist biochemischen) Literatur festgehaltenen Versuchsmaterials. Daher handelt es sich bei den in diesem Kapitel zusammengestellten Ergebnissen vorwiegend um solche Versuche, die im vorigen Kapitel als »Gelchromatographie« im engeren Sinn verstanden worden waren. Es werden dabei meist mehr oder weniger komplex zusammengesetzte Stoffgemische durch Chromatographie an relativ langen Gelpackungen in mehrere Fraktionen zerlegt, die sich jeweils im Molekulargewicht nur mäßig unterscheiden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Tabelle 36. Enzyme, die Phosphorsäure-Ester spalten

  1. von Hofsten, B., and J. Porath: Purification and some properties of an acid phosphatase from E.coli. Biochim. biophys. Acta 64, 1 (1962).CrossRefGoogle Scholar
  2. Esrsorn, B.: Z. Separation of phosphatase isoenzymes by gel filtration. klin. Chem. 2, 53 (1964).Google Scholar
  3. Engström, L.: Biochim. biophys. Acta 92, 71 (1964). Studies on bovine-liver alkaline phosphatase, purification, phosphate incorporation.Google Scholar
  4. Ostrowskz, W., and J. Rybarska: Biochim. biophys. Acta 105, 196 (1965). Studies on human prostatic acid phosphomonoesterase. Further purification and molecular weight of the enzyme.CrossRefGoogle Scholar
  5. Singer, M. F., and G. Tolbert: Biochemistry 4,1319 (1965). Purification and properties of potassium-activated phosphodiesterase from E.coli.PubMedCrossRefGoogle Scholar
  6. Anderson, J. H., and C. E. Carter: Biochemistry 4, 1102 (1965). Acid soluble ribosomal ribonuclease of E.coli.PubMedCrossRefGoogle Scholar
  7. Naber, J. E., A. M. Schefman, and A. Rörsch: Biochim. biophys. Acta 99, 307 (1965). Purification of E.coli endonuclease by agarose chromatography.PubMedCrossRefGoogle Scholar
  8. Bark, W.: Biochim. biophys. Acta 95, 652 (1965). Purification of two endonucleases from potato tubers.CrossRefGoogle Scholar

Tabelle 37. Verschiedene Esterasen

  1. Bark, W., and J. Porath: Acta them. scand. 13, 1256 (1959). Fractionation of snake venom by the gel filtration method.CrossRefGoogle Scholar
  2. Bark, W.: Biochim. biophys. Acta 49, 195 (1961). Partial purification of phosphodiesterase, 5’-nucleotidase, lecithinase A, and acetylcholine esterase from ringhalscobra venom.CrossRefGoogle Scholar
  3. Riesen, W. H., and E. J. Hawrylewicz: Biochim. biophys. Acta 90, 372 (1964). Fractionation of Indian cobra venom by column chromatography. I. Dextran gels.PubMedCrossRefGoogle Scholar
  4. Sarda, L., M. F. Maylié, J. Roger et P. Desnuelle: Biochim. biophys. Acta 89, 183 (1964). Comportement de la lipase pancréatique sur Sephadex. Application à la purification et à la détermination du poids moléculaire de cet enzyme.Google Scholar
  5. Gelotte, B.: Acta chem. scand. 18, 1283 (1964). Separation of pancreatic enzymes by gel filtration.CrossRefGoogle Scholar
  6. Downey, W. K., and P. Andrews: Biochem. J. 94, 642 (1965). Gel filtration applied to the study of lipases and other esterases.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Frazer, G. P., and A. D. Nicol: Clin. chim. Acta 13, 552 (1966).CrossRefGoogle Scholar

Tabelle 38. Verschiedene Enzyme

  1. Delin, S., and J. Porath: Biochim. biophys. Acta 67, 197 (1963). Purification of a-and ß-hydroxysteroid dehydrogenases from pseudomonas testosteroni by gel filtration.PubMedCrossRefGoogle Scholar
  2. Chersi, A.: Science Tools 11, 1 (1964). The purification of lactic dehydrogenase by recycling chromatography.Google Scholar
  3. Flatmark, T.: Acta chem. scand. 18, 1517 (1964). Studies on the peroxidase effect of cytochrome c. II. Purification of beef heart cytochrome c by gel filtration.CrossRefGoogle Scholar
  4. Schreiber, G., U. U. Eckstein, A. Oeser und H. Holzer: Biochem. Z. 340,13 (1964). Anreicherung einer Aspartataminotransferase aus Bierhefe.PubMedGoogle Scholar
  5. Gasior, E., and K. Moldave: J. biol. Chem. 240, 3346 (1965). Resolution of aminoacyltransfering enzymes from rat liver by molecular sieve chromatography.PubMedCrossRefGoogle Scholar
  6. Chase, J. F. A., D. J. Pearson, and P. K. Tubes: Biochim. biophys. Acta 96,162 (1965). The preparation of crystalline carnitine acetyltransferase.PubMedCrossRefGoogle Scholar
  7. Boll, M., und H. Holzer: Biochem. Z. 343, 504 (1965). Untersuchungen zur Serinhydratase-Reaktion in Hefe.PubMedGoogle Scholar
  8. Maass, D., H. Pelzer und W. Weidel: Z. Naturforschung 19b, 413 (1964). Reinigung, Eigenschaften und Substratspezifität einer N-Acetylglucosaminidase aus E.coli B. BUDDECKE, E., und D. PLATT: Z. physiol Chem. 343, 61 (1965). Untersuchungen zur Chemie der Arterienwand, VIII. Nachweis, Reinigung und Eigenschaften der Hyaluronidase aus der Aorta des Rindes.CrossRefGoogle Scholar

Tabelle 39. Wachstumshormon, Isolierung und Markierung

  1. Papkoff, H., C. H. Li, and W.-K. Liu: Arch. Biochem. Biophys. 96, 216 (1962). The isolation and characterization of growth hormone from porcine pituitaries.PubMedCrossRefGoogle Scholar
  2. Reisfeld, R. A., B. G. Hallows, D. E. Williams, N. G. Brink, and S. L. Steelman: Nature 197, 1206 (1963). Purification of human growth hormone on Sephadex G-200.PubMedCrossRefGoogle Scholar
  3. Roos, P., H. R. Fevold, and C. A. Gemzell: Biochim. biophys. Acta 74, 525 (1963). Preparation of human growth hormone by gel filtration.PubMedCrossRefGoogle Scholar
  4. Dellacha, J. M., and M. Sonenberg: J. biol. Chem. 239, 1515 (1964). Purification of bovine growth hormone.PubMedCrossRefGoogle Scholar
  5. Reusser, F., and H. Ko: Experientia 22, 310 (1966). Fractionation of highly purified bovine growth hormone on Sephadex G-25 gel.PubMedCrossRefGoogle Scholar
  6. Saxena, B. B., and P. H. Henneman: Endocrinology 78, 561 (1966). Preparation and properties of growth hormone from equine pituitary glands.PubMedCrossRefGoogle Scholar
  7. Hunter, W. M.: Biochem. J. 97, 199 (1965). Homogeneity studies on human growth hormone.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hxnson, L. A., P. Roos, and L. Rymo: Nature 212, 948 (1966). Heterogeneity of human growth hormone preparations by immuno gel filtration and gel filtration electrophoresis.CrossRefGoogle Scholar
  9. Dellacha, J. M., M. A. Enero, and I. Faiferman: Experientia 22,16 (1966). Molecular weight of bovine growth hormone.PubMedCrossRefGoogle Scholar
  10. Greenwood, F. C., W. M. Hunter, and J. S. Glover: Biochem. J. 89,114 (1963). The preparation of islJ-labelled human growth hormone of high specific radioactivity.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Collipp, P. J., S. A. Kaplan, D. C. Boyle, and C. S. N. Shimizu: J. biol. Chem. 240,143 (1965). “C-acetyl bovine growth hormone. Physiological and antigenic properties.PubMedCrossRefGoogle Scholar
  12. Leaver, F. W.: Proc. Soc. exptl. Biol. Med. 122, 188 (1966). Evidence for the existence of human growth hormone-ribonucleic acid complex in the pituitary.CrossRefGoogle Scholar

Tabelle 40. Protein-Hormone aus dem Hypophysen-Vorderlappen

  1. Jutisz, M., C. Hermier, A. Colonge et R. Courrier: C. R. Acad. Sci. (Paris) 256, 3922 (1963). Isolement des hormones hypophysaires: purification de l’hormone folliculo stimulante de Mouton par filtration sur gel Sephadex.Google Scholar
  2. Squire, P. G., B. Starman, and C. H. Li: J. Biol. Chem. 238, 1389 (1963). Studies of pituitary lactogenic hormone. XXII. Analysis of the state of aggregation of the ovine hormone by ultracentrifugation and exclusion chromatography.PubMedCrossRefGoogle Scholar
  3. Sluyser, M., and C. H. Li: Nature 200, 1007 (1963). Preparation of a low molecular weight component with lactogenic activity from a limited chymotryptic digest of ovine prolactin.PubMedCrossRefGoogle Scholar
  4. Sanfelippo, P. M., and J. G. Surak: J. Chromatog. 13, 148 (1964). The behavior of hormonally-active proteins and peptides of the anterior pituitary on cross-linked dextran polymer gels.CrossRefGoogle Scholar
  5. Morris, C. J. O. R.: Acta endocr. Suppl. 90, 163 (1964). On the molecular weight of pregnant mare’s serum gonadotropin.Google Scholar
  6. Ward, D. N., and M. S. Arnort: Anal. Biochem. 12, 296 (1965). Gel filtration of proteins with particular reference to the glycoprotein, luteinizing hormone.PubMedCrossRefGoogle Scholar
  7. Reichert, Jr. L. E., und N. S. Jiang: Endocrinology 77, 78 (1965). Comparative gel filtration and density gradient centrifugation studies in heterologous pituitary luteinizing hormones.CrossRefGoogle Scholar

Tabelle 41. Proteine und Peptide aus den Schilddrüsen

  1. Rasmussen, H., and L. C. Craig: J biol. Chem. 236, 759 (1961). Isolation and characterization of bovine parathyroid hormone.PubMedCrossRefGoogle Scholar
  2. Rasmussen, H., and L. C. Craig: Biochim biophys. Acta 56, 332 (1962). Purification of bovine parathyroid hormone by gel filtration.PubMedCrossRefGoogle Scholar
  3. Aurbach, G. D., and J. T. Potts, Jr.: Endocrinology 75, 290 (1964). Partition of parathyroid hormone on Sephadex G-100.PubMedCrossRefGoogle Scholar
  4. Rasmussen, H., Y.-L. SZE, and R. Young: J. biol. Chem. 239, 2852 (1964). Further studies on the isolation and characterization of parathyroid polypeptides.PubMedCrossRefGoogle Scholar
  5. Salvatore, G., M. Salvatore, H. J. Cahnmann, and J. Robbins: J. biol. Chem. 239, 3267 (1964). Separation of thyroidal jodoproteins and purification of thyroglobulin by gel filtration and density gradient centrifugation.PubMedCrossRefGoogle Scholar
  6. Salvatore, G., G. Vecchio, M. Salvatore, H. J. Cahnmann and J. Robbins: J. biol. Chem. 240, 2935 (1965). Thyroid proteins.PubMedCrossRefGoogle Scholar
  7. Nunez, J., J. Mauchamp, V. Macchia et J. Roche: Biochim. biophys. Acta 107, 247 (1965). Biosynthèse in vitro d’hormones doublement marquées dans des coupes de corps thyroide. II. Biosynthèse d’une préthyroglobuline non iodée.PubMedCrossRefGoogle Scholar
  8. Tenenhouse, A., C. Arnaud, and H. Rasmussen: Proc. natl. Acad. Sci. 53, 818 (1965). The isolation and characterization of thyrocalcitonin.PubMedCrossRefGoogle Scholar
  9. Friedman, J., and L. G. Raisz: Science 150, 1465 (1965). Thyrocalcitonin: Inhibitor of bone resorption in tissue culture.PubMedCrossRefGoogle Scholar
  10. Hawker, C. D., J. D. Glass, and H. Rasmussen: Biochemistry 5, 344 (1966). Further studies on the isolation and characterization of parathyroid polypeptides.PubMedCrossRefGoogle Scholar

Tabelle 42. Fraktionierung von Plasmaproteinen

  1. Flodin, P.: Dissertation, Uppsala, 1962. Dextran Gels and their Applications in Gel Filtration.Google Scholar
  2. Gelorte, B., P. Flodin, and J. Killander: Arch. Biochem. Biophys., Suppl. 1, 319 (1962). Fractionation of human plasma proteins by gel filtration and zone electrophoresis or ion-exchange chromatography.Google Scholar
  3. Flodin, P., and J. Killander: Biochim. biophys. Acta 63, 403 (1962). Fractionation of human serum proteins by gel filtration.CrossRefGoogle Scholar
  4. Killander, J.: Protides biol. Fluids 11, 446 (1963). Fractionation of antibodies of 19 S, 7 S and »intermediate« types by gel filtration and ion exchange chromatography or preparative electrophoresis.Google Scholar
  5. Rosenquist, G. L., and R.V. Gilden: Biochim. biophys. Acta 78, 543 (1963). Chicken antibodies to bovine serum albumin. Molecular size and sensitivity to 2-mercaptoethanol.PubMedCrossRefGoogle Scholar
  6. Killander, J., and C. F. Högman: Scand. J. clin. Lab. Invest. 15, 130 (1963). Fractionation of human blood group antibodies by gel filtration.PubMedGoogle Scholar
  7. Broman, L., and K. Kjellin: Biochim. biophys. Acta 82, 101 (1964). A rapid semi-continuous method for purification of ceruloplasmin from human serum.CrossRefGoogle Scholar
  8. Terr, A. I., and J. D. Bentz: J. Allergy 35, 206 (1964). Gel filtration of human skin sensitizing antibody and ß2A-globuline.PubMedCrossRefGoogle Scholar
  9. Porath, J., and N. Us: Biochim. biophys. Acta 90, 324 (1964). Chemical studies on immunoglobulins I. A new preparative procedure for y-globulins employing glycine-rich solvent systems.PubMedCrossRefGoogle Scholar
  10. Killander, J., S. Bengtsson, and L. Philipson: PTOC. Soc. exp. Biol. Med. 115, 861 (1964). Fractionation of human plasma macroglobulins by gel filtration on pearl-condensed agar.CrossRefGoogle Scholar
  11. Got, R.: Clin. chim. Acta 11, 432 (1965). Fractionation of human lactoserum proteins.PubMedCrossRefGoogle Scholar
  12. Chan, J. Y. S., and E. T. Mertz: Can. J. Biochem. 44, 475 (1966). Studies on plasmino- gen. V. Purification of bovine and human plasminogens by Sephadex chromatography.PubMedCrossRefGoogle Scholar
  13. Franzini, C.: Clin. chim. Acta 14, 576 (1966). Gel filtration behaviour of human serum lipoproteins.PubMedCrossRefGoogle Scholar
  14. Cohen, I. R., and L. C. Norins: Science 152, 1257 (1966). Natural human antibodies to gram-negative bacteria: immunoglobulins G, A and M.PubMedCrossRefGoogle Scholar
  15. Jacobsen, S.: Nature 210, 98 (1966). Separation of two different substrates for plasma kinin-forming enzymes.PubMedCrossRefGoogle Scholar
  16. Allan, D., and M. Malkinson: Nature 211, 493 (1966). Spectrophotometric detection and measurement of sensitizing antibodies.PubMedCrossRefGoogle Scholar
  17. Werner, M.: J. Chromatog. 25, 63 (1966). Fractionation of lipoproteins from blood by agarose gel filtration.CrossRefGoogle Scholar
  18. Pâistoupil, T. I., and S. Ulrych: J. Chromatog. 25, 58 (1966). Study of modified bovine serum by gel filtration on pearl-condensed agar.CrossRefGoogle Scholar

Tabelle 43. Komplexe der Plasmaproteine mit Steroidhormonen

  1. de Moor, P., K. Heirwegh, J. F. Heremans, and M. Declerck-Raskin: J. clin. Invest. 41, 816 (1962). Protein binding of corticoids studied by gel filtration.CrossRefGoogle Scholar
  2. Quincey, R.V., and C. H. Gray: J. Endocrinol. 26, 509 (1963). A comparison of protein-binding of cortisol as measured by equilibrium dialysis and gel filtration.PubMedCrossRefGoogle Scholar
  3. de Moor, P., R. Deciex, and O. Steeno: J. Endocrinol. 27, 355 (1963). Influence of various steroids in the specific binding of cortisol.CrossRefGoogle Scholar
  4. de Moor, P., K. Heirwegh, and O. Steeno: Arch. Biochem. Biophys. 103, 506 (1963). Protein binding of progesterone studied by gel filtration.CrossRefGoogle Scholar
  5. Boulouard, R., et Y. A. Fontaine: C. R. Acad. Sci. (Paris) 257, 1379 (1963). Sur l’état de la corticostérone plasmatique chez le rat. Etude par filtration sur gels Sephadex G-100 et G-200.Google Scholar
  6. Talwar, G. P., S. J. Segal, A. Evans, and O.W. Davidson: Proc. natl. Acad. Sci. 52, 1059 (1964). The binding of estradiol in the uterus: A mechanism for derepression of RNA synthesis.PubMedCrossRefGoogle Scholar
  7. Murphy, B. E. P., and CH. J. Pattee: J. clin. Endocrinol. Metab. 24, 919 (1964). Deter- mination of plasma corticoids by competitive protein-binding analysis using gel filtration.PubMedCrossRefGoogle Scholar

Tabelle 44. Antigen-Antikörper Komplexe

  1. Bassett, E. W., S. M. Beiser, and S. W. Tanenbaum: Science 133, 1475 (1961). Purification of antibody to galactosyl-protein conjugates.PubMedCrossRefGoogle Scholar
  2. Gramlich, F., D. Mohring and H. E. Müller: Naturwissenschaften 49, 451 (1962). Reinigung von Antikörpern durch Gelfiltration.CrossRefGoogle Scholar
  3. Givol, D., S. Fuchs, and M. Sbla: Biochim. biophys. Acta 63, 222 (1962). Isolation of antibodies to antigens of low molecular weight.PubMedCrossRefGoogle Scholar
  4. Bennett, J. C., and E. Haber: J. biol. Chem 238, 1362 (1963). Studies on antigen conformation during antibody purification.PubMedCrossRefGoogle Scholar
  5. Haber, E., L. B. Page, and G. A. Jacoby: Biochemistry 4, 693 (1965). Synthesis of antigenic branch-chain copolymers of angiotensin and poly-L-lysine.PubMedCrossRefGoogle Scholar
  6. Haber, E., L. B. Page, and F. F. Richards: Anal. Biochem. 12, 163 (1965). Radio immunoassay employing gel filtration.PubMedCrossRefGoogle Scholar
  7. Stemke, G.W.: Immunochemistry 2, 359 (1965). A study of soluble complexes and un-combined material in antigen-antibody reactions involving allotypic specificities of purified rabbit y-globulin.PubMedCrossRefGoogle Scholar
  8. Boyns, A. R., and J. Hardwicke: Immunology 10, 57 (1966). The isolation of soluble antigen-antibody complexes on Sephadex G-200.PubMedPubMedCentralGoogle Scholar

Tabelle 45. Bruchstarke von y-Globulinen

  1. Hanson, L. A., and B. G. Johansson: Nature 187, 599 (1960). Presence of immunologically active fragments after proteolytic degradation of human y-globulin.PubMedCrossRefGoogle Scholar
  2. Fleischmann, J. B., R. R. Porter, and E. M. Press: Biochem. J. 88, 220 (1963). The arrangement of the peptide chains in y-globulin.CrossRefGoogle Scholar
  3. Hanson, L. A., and B. G. Johansson: Acta chem. scand. 17, 2701 (1963). Studies on the antigenic complexity of human 7 S y-globulin.CrossRefGoogle Scholar
  4. Hanson, L. A., and B. G. Johansson: Clin. chim. Acta 8, 66 (1963). Isolation of immunologically active fragments of normal human y-globulin after tryptic degradation.PubMedCrossRefGoogle Scholar
  5. Tan, M., and W. V. Epstein: Science 139, 53 (1963). Purification of y-globulin fragments by gel filtration.PubMedCrossRefGoogle Scholar
  6. Metzger, H., and S. J. Singer: Science 142, 674 (1963). Binding capacity of reductively fragmented antibodies to the 2,4-dinitrophenyl group.PubMedCrossRefGoogle Scholar
  7. Goodman, J.W.: Biochemistry 3, 857 (1964). Immunologically active fragments of rabbit y-globulin.PubMedCrossRefGoogle Scholar
  8. James, K., C. S. Henney, and D. R. Stanworth: Nature 202, 563 (1964). Structural changes occurring in 7 S y-globulins.PubMedCrossRefGoogle Scholar
  9. Fougereau, M., and G. M. Edelman: Biochemistry 3, 1120 (1964). Resemblance of the gross arrangement of polypeptide chains in reconstituted and native y-globulins.PubMedCrossRefGoogle Scholar
  10. Utsumi, S., and F. Karush: Biochemistry 3, 1329 (1964). The subunits of purified rabbit antibody.PubMedCrossRefGoogle Scholar
  11. Criddle, R. S.: Arch. Biochem. Biophys. 106, 101 (1964). Dissociation and separation of y-globulin into subunits.PubMedCrossRefGoogle Scholar
  12. Franék, F., and J. Ziirian: Collect. czech. chem. Commun. 29, 1401 (1964). Limited cleavage of disulphide bonds of pig y-globulin by S-sulphonation.CrossRefGoogle Scholar
  13. Kotÿnek, O., and F. Franék: Collect. czech chem. Commun. 30, 3153 (1965). Unequal importance of different polypeptide chains for the determination of antibody specificity in bovine anti-dinitrophenyl antibodies.CrossRefGoogle Scholar
  14. Yonezawa, D., P. J. Migliore, S. C. Capetillo, and B. Jirgensons: Makromol. Chem. 77, 191 (1964). Structural studies on human serum y-globulins and myeloma proteins. II. Cleavage of the disulfide bonds of the globulins with sulfite and recombination of the fragments.CrossRefGoogle Scholar
  15. Jirgensons, B., M. E. Adams-Mayne, V. Gorguraki, and P. J. Migliore: Arch. Biochem. Biophys. 111, 283 (1965). III. Oxidative sulfitolysis of myeloma globulins and reconstitution of the macromolecules.PubMedCrossRefGoogle Scholar
  16. Inman, F. P., and A. Nisonoff: J. biol. Chem. 241, 322 (1966). Reversible dissociation of fragment Fc of rabbit yG-immunoglobin.PubMedCrossRefGoogle Scholar
  17. Sjöqvist, J.: Nature 210, 1182 (1966). Heterogeneity of heavy chain preparations from human y-G-immunoglobulins.CrossRefGoogle Scholar
  18. Lanckman, M.: Nature 210, 1379 (1966). Structural heterogeneity of L-chains in antibodies of restricted specificity.PubMedCrossRefGoogle Scholar
  19. Franék, F.: Collect. Czechoslov. chem. Commun. 31,1142 (1966). Study of the polypeptide chain arrangement in pig y-G-globulin through molecular and peptide map characteristics of individual polypeptide chains and higher subunits.CrossRefGoogle Scholar

Tabelle 46. Trennung von Oligopeptiden bei der Sequenzermittlung von Proteinen

  1. Bennich, H.: Biochim. biophys. Acta 51, 265 (1961). Gel filtration of tryptic hydrolysates of a-casein.PubMedCrossRefGoogle Scholar
  2. Stepanov, V., D. Handschuh und F. A. Anderer: Z. Naturforschung 16b, 626 (1961). Tryptische Spaltpeptide von Tabak-Mosaik-Virus.CrossRefGoogle Scholar
  3. Guidotti, G., R. J. Hill, and W. Konigsberg: J. biol. Chem. 237, 2184 (1962). The structure of human hemoglobin. II. The separation and amino acid composition of the tryptic peptides from the a-and ß-chains.PubMedCrossRefGoogle Scholar
  4. Ambler, R. P.: Biochem. J. 89, 349 (1963). The amino acid sequence of pseudomonas cytochrome c-551.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Grassmann, W., K. Hannig und A. Nordwig: Z. physiol. Chem. 333, 154 (1963). Über die apolaren Bereiche des Kollagenmoleküls.CrossRefGoogle Scholar
  6. Chernoff, A. I., and N. Pettit: Biochim. biophys. Acta 97, 47 (1965). The amino acid composition of hemoglobin. VI. Separation of the tryptic peptides of hemoglobin knoxville No. 1 on Dowex 1 X2 and Sephadex.PubMedCrossRefGoogle Scholar
  7. Siebert, G., A. Schmirr und R. V. Malortie: Z. physiol. Chem. 342, 20 (1965). Reinigung und Eigenschaften von Dorschmuskel-Kathepsin.CrossRefGoogle Scholar
  8. Pfleiderer, G. und A. Krauss: Biochem. Z. 342, 85 (1965). Die Wirkungsspezifität von Schlangengiftproteasen.PubMedGoogle Scholar
  9. Eaker, D. L., T. P. King, and L. C. Craig: Biochemistry 4, 1479 (1965). Des-lysylglutamyl-and des-lysyl-pyroglutamyl-ribonucleases II, structural studies.PubMedCrossRefGoogle Scholar
  10. Maroux, S., et M. Rovery: Biochim. biophys. Acta 113, 126 (1966). Contribution à l’étude de la structure de la chymotrypsine cc de boeuf. La chaîne C et son core trypsique.PubMedCrossRefGoogle Scholar

Tabelle 47. Isolierung markierter Peptide aus Protein-Part ialhydrolysaten

  1. Porath, J.: Biochim. biophys. Acta 39, 193 (1960). Gel filtration of proteins, peptides and amino acids.PubMedCrossRefGoogle Scholar
  2. Mahowald, T. A.: Biochemistry 4, 732 (1965). The amino acid sequence around the »reactive« sulfhydryl groups in adenosine triphosphocreatine phosphotransferase.PubMedCrossRefGoogle Scholar
  3. Fasold, H.: Biochem. Z. 342, 295 (1965). Zur chemischen Untersuchung der Tertiärstruktur von Proteinen. II. Abbau des Azoglobins, Auftrennung und Identifizierung einzelner Brückenpeptide.PubMedGoogle Scholar
  4. Hirs, C. H.W., and J. H. Kycia: Arch. Biochem. Biophys. 111, 223 (1965). Identification of initial reaction sites in the dinitrophenylation of pancreatic ribonuclease A.PubMedCrossRefGoogle Scholar
  5. Harris, J. I., and L. Polgar: J. mol. Biol. 14, 630 (1965). Amino acid sequence around a reactive lysine in glyceraldehyde 3-phosphate dehydrogenase.PubMedCrossRefGoogle Scholar
  6. Hayashi, K., T. Imoro, G. Funatsu, and M. Funatsu: J. Biochem. (Japan) 58, 227 (1965). The position of the active tryptophan residue in lysozyme.CrossRefGoogle Scholar
  7. Holbrook, J. J., G. Pfleiderer, J. Schnetger, and S. Diemair: Biochem. Z. 344, 1 (1966). Preparation of the tryptic peptides containing the essential cysteine residues of lactate dehydrogenase I and V.Google Scholar

Tabelle 48. Isolierung von Glycopeptiden

  1. Nolan, C., and E. L. Smith: J. biol. Chem. 237, 446 (1962). Glycopeptides. Isolation and properties of glycopeptides from rabbit y-globulin.Google Scholar

Tabelle 49. Entfernung niedermolekularer Stoffe aus Nucleinsäure-Lösungen

  1. Nolan, C., and E. L. Smith: J. biol. Chem. 237, 453 (1962). Glycopeptides. Isolation and properties of glyco- peptides from a bovine globulin of colostrum and from fraction II-3 of human globulin.PubMedCrossRefGoogle Scholar
  2. Marks, G. S., R. D. Marshall, A. Neuberger, and H. Papkoff: Biochim. biophys. Acta 63, 340 (1962). A simplified procedure for the isolation of glycopeptides from glycoproteins.CrossRefGoogle Scholar
  3. Lee, Y. CH., and R. Montgomery: Arch. Biochem. Biophys. 97, 9 (1962). Glycopeptides from ovalbumin: the structure of the peptide chains.PubMedCrossRefGoogle Scholar
  4. Montgomery, R., and Y. CH. Wu: J. biol. Chem. 238, 3547 (1963). The carbohydrate of ovomucoid. Isolation of glycopeptides and the carbohydrate protein linkage.PubMedCrossRefGoogle Scholar
  5. Neuberger, A., and H. Papkoff: Biochem. J. 87, 581 (1963). Carbohydrates in protein. 7. The nature of the carbohydrate in ovomucoid.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carsten, M. E., and J. G. Pierce: J. biol. Chem. 238, 1724 (1963). Chemical studies on thyrotropin preparations and related pituitary glycoproteins.PubMedCrossRefGoogle Scholar
  7. Ghuysen, J.-M., and J. L. Strominger: Biochemistry 2, 1110 (1963). Structure of the cell wall of Staphylococcus aureus, Strain Copenhagen. I. Preparation of fragments by enzymatic hydrolysis.PubMedCrossRefGoogle Scholar
  8. Plummer, Jr., T. H., and C. H.W. Hirs: J. biol. Chem. 239, 2530 (1964). On the structure of bovine pancreatic ribonuclease B. Isolation of a glycopeptide.PubMedCrossRefGoogle Scholar
  9. Bourrillon, R., J. L. Vernay: Biochim. biophys. Acta 117, 319 (1966). Deux glycopeptides à hydroxyproline dans l’urine humaine normale.PubMedCrossRefGoogle Scholar
  10. Demaille, J, M. Dautrevaux, R. Havez, G. Biserte: Bull. Soc. Chim. biol. 48, 45 (1966). Isolement d’une fraction glycopeptidique de l’a2-macroglobuline du sérum de porc.Google Scholar
  11. Bresler, S. E., KH. M. Rubina, R. A. Graevskaya, and N. N. Vasileva: Biochemistry (russ.) 26, 649 (1961). The separation of ribonucleic and adenosinetriphosphoric acids by chromatography on molecular sieves.Google Scholar
  12. Boman, H. G., and S. Hjertén: Arch. Biochem. Biophys., Suppl. 1 276 (1962). Molecular sieving of bacterial RNA.Google Scholar
  13. Hartmann, G., U. Coy und G. Kniese: Biochem. Z. 330 227 (1963). Zum biologischen Wirkungsmechanismus der Actinomycine. Vgl. auch Biochem. Z. 343, 16 (1965) und 340, 390 (1964).Google Scholar
  14. Strohmaier, K.: Z. Naturforschung 18b 788 (1963). Vergleichende Untersuchungen der infektiösen Ribonucleinsäure des Virus der ansteckenden Schweinelähmung (Tesche-ner Krankheit) mit hochmolekularer Gewebe-Ribonucleinsäure.CrossRefGoogle Scholar
  15. Gross, M., B. Skoczylas, and W. Turski: Anal. Biochem. 1110 (1965). Separation of phenol and ribonucleic acid by dextran gel filtration.PubMedCrossRefGoogle Scholar
  16. Fritz, H.-G., R. Delhey, und H. Ross: Z. Naturforschung 19b 1165 (1964). Zur Gewinnung von infektiöser TMV-RNS aus Pflanzenmaterial mit Hilfe der Gelfiltration.CrossRefGoogle Scholar
  17. Kössel, H., und S. Doehring: Z. Physiol. Chem. 340 221 (1965). Zur Reaktion von Nucleinsäuren mit diazotierter Sulfanilsäure.CrossRefGoogle Scholar

Tabelle 50. Trennung von Oligonucleotiden

  1. Gelotte, B.: Naturwissenschaften 48, 554 (1961). Fraktionierung von Nucleinsäuren und Nucleotiden.CrossRefGoogle Scholar
  2. Ishikura, H.: Biochim. biophys. Acta 51, 189 (1961). Fractionation of RNAse I core by gel filtration and its relation to streptolysin S’-forming activity.PubMedCrossRefGoogle Scholar
  3. Zadrazil, S., Z. Jormova, and F. Jorm: Collect. czech. chem. Commun. 26, 2643 (1961). Separation of nucleic acid components on Sephadex.CrossRefGoogle Scholar
  4. Ingram, V. M., and J. G. Pierce: Biochemistry 1, 580 (1962). Some properties of yeast amino acid acceptor ribonucleic acid and mapping of the oligonucleotides produced by ribonuclease digestion.CrossRefGoogle Scholar
  5. Ishikura, H.: J. Biochem. (Japan) 52, 324 (1962). Further studies on the fractionation of RNAse I-core by gel filtration.Google Scholar
  6. Habermann, V.: Collect. czech. chem. Commun. 28, 510 (1963). Studies on deoxyribonucleic acids. II. Degradation of deoxyribonucleic acids to purine nucleotide sequences.Google Scholar
  7. Hoxn, Tx., und W. Pollmann: Z. Naturforschung 18b, 919 (1963). Die Trennung von Nucleinsäure-Bausteinen mit Sephadex.Google Scholar
  8. Lipsett, M. N.: J. biol. Chem. 239, 1250 (1964). Aggregation of guanine oligoribonucleotides and the effect of mercuric salts.PubMedCrossRefGoogle Scholar
  9. Stickland, R. G.: Anal. Biochem. 10, 108, (1965). Separation of 5’-ribonucleotides by two-dimensional thin-layer chromatography.Google Scholar
  10. Schwartz, A. N., A. W. G. Yee, and B. A. Zabin: J. Chromatog. 20, 154 (1965). Separation of nucleotides, nucleosides and bases on a new gel filtration material.CrossRefGoogle Scholar
  11. Uziel, M, and W. E. Cohn: Biochim. biophys. Acta 103, 539 (1965). Desalting of nucleotides by gel filtration.Google Scholar
  12. Birnboim, H.: Biochim. biophys. Acta 119, 198 (1966). The use of gel filtration to distinguish between endonucleolytic and exonucleolytic types of degradation.PubMedCrossRefGoogle Scholar

Tabelle 51. Auftrennung von Oligosacchariden

  1. Flodin, P., and K. Aspberg: Biological Structure and Function, New York, 1961, Vol. 1, S. 345. Separation of oligosaccharides with gel filtration.Google Scholar
  2. Flodin, P., J. D. Gregory, and L. Rodén: Anal. Biochem. 8, 424 (1964). Separation of acidic oligosaccharides by gel filtration.PubMedCrossRefGoogle Scholar
  3. Lee, Y.-CH., and C. E. Ballou: Biochemistry 4, 257 (1965). Preparation of mannobiose, mannotriose and a new mannotetraose from Saccharomyces cerevisiae mannan.Google Scholar
  4. Mierrinen, T. A.: Scand. J. clin. Lab. Invest. 14, 380 (1962). Fractionation of urinary mucosaccharides by gel filtration.CrossRefGoogle Scholar
  5. Lundblad, A., and I. Berggard: Biochim. biophys. Acta 57, 129 (1962). Gel filtration of the low molecular weight carbohydrate components of normal urineGoogle Scholar
  6. Zeleznick, L. D.: J. Chromatog. 14, 139 (1964). The use of Sephadex G-25 in partition column chromatography.CrossRefGoogle Scholar
  7. Barrett, A. J., and D. H. Northcote: Biochem. J. 94, 617 (1965). Apple fruit pectic substances.Google Scholar
  8. Cifonelli, J A: .Carbohydrate Res. 2, 150 (1966). Acid hydrolysis of acidic mucopolysaccharides.Google Scholar
  9. Lundblad, A.: Nature 211, 531 (1966). Low molecular weight carbohydrates in urine from secretors and none-secretors of different blood groups.PubMedCrossRefGoogle Scholar

Tabelle 52. Gelchromatographie bei der Diagnose von pathologischen Proteinen

  1. van Eijk, H. G., C. H. Monfoort, J. J. Witte, and H. G. K. Westenbrink: BIOChim. biophys. Acta 63, 537 (1962). Isolation and characterization of some Bence-Jones proteins.Google Scholar
  2. Erstein, W. V., and J. M. Tan: J. Lab. clin. Med. 60,125 (1962). y-Globulin interactions in the sera of two patients with rheumatoid arthritis studied by gel filtration.Google Scholar
  3. Roskes, S. D., and T. E. Thompson: Clin. chim. Acta 8, 489 (1963). A simple molecular sieve technique for detecting macroglobulinemia.Google Scholar
  4. Harboe, N. M. G., and A. Drivsholm: Protides biol. Fluids 11, 450 (1963). Characterization of abnormal serum proteins from patients with multiple myeloma and Waldenström’s macroglobulinaemia by means of size chromatography.Google Scholar
  5. Lee, M., and J. R. Debro: J. Chromatog. 10, 68 (1963). The application of gel filtration to the measurement of the binding phenol red by human serum proteins.CrossRefGoogle Scholar
  6. Ratcliff, A. P., and J. Hardwicke: J. clin. Path. 17, 676 (1964). Estimation of serum hemoglobin-binding capacity (haptoglobin) on Sephadex G-100.Google Scholar
  7. Aebi, H., C. H. Schneider, H. Gang, and U. Wiesmann: Experientia 20, 103 (1964). Separation of catalase and other red cell enzymes from hemoglobin by gel filtration.Google Scholar
  8. Richard, G. B.: Clin. chim. Acta 11, 399 (1965). Study of the heterogeneity of myeloma of the ß2A-type by Sephadex gel filtration.PubMedCrossRefGoogle Scholar
  9. Wirth, K., U. Ullmann, K. Brand, K. Huth und B. Hess: Klinische Wochenschrift 43, 528 (1965). Analyse von Globulinen mit der Gelfiltration.Google Scholar
  10. Rivera J.V., E. ToRo-Govco, and M. L. Matos: Am. J. med. Sci. 249, 371 (1965). Molecular sieve in the study of plasma proteins.PubMedCrossRefGoogle Scholar
  11. Johansson, B. G., and L. Rymo: Protides biol. Fluids 14, (1966). Some applications of thin layer chromatographic techniques in molecular sieve chromatography.Google Scholar
  12. Agostoni, A., C. Vergani, and E. Cirla: Protides biol. Fluids 14, (1966). Studies on Bence-Jones protein by thin layer gel filtration.Google Scholar
  13. Kyle, R. A., and W. F. Mcguckin: J. Lab. clin. Med. 67, 344 (1966). Separation of macroglobulins from myeloma proteins by Sephadex G-200 gel filtration.PubMedGoogle Scholar
  14. Piscator, M.: Arch. Environ. Health 12, 345 (1966). Proteinuria in chronic Cd-poisoning.Google Scholar
  15. Mckenzie, J. M., P. R. Fowler, and V. Fiorica: Anal. Biochem. 16, 139 (1966). Semiautomated measurements of hemoglobin and total protein in urine using a molecular sieve module.PubMedCrossRefGoogle Scholar
  16. Harrison, J. F., and B. E. Northam: Clin. chim. Acta 14, 679 (1966). Low molecular weight urine protein investigated by gel filtration.PubMedCrossRefGoogle Scholar

Tabelle 53. Toxische Proteine

  1. Friedberg, K. D., H. Stegemann und W. Vogt: Naturwissenschaften 50, 523 (1963). Anreicherung von Anaphylatoxin durch Gelfiltxation.Google Scholar
  2. Stegemann, H., W. Vogt und K. D. Friedberg: Z. physiol. Chem. 337, 269 (1964). Über die Natur des Anaphylatoxins.Google Scholar
  3. Alvord Jr., C. E., M.W. Kies, F. N. Lebaron, and R. E. Martenson: Science 151, 821 (1966). Encephalitogenic activity of bovine basic proteins.Google Scholar
  4. Tirunarayanan, M. O., and C. R. Salenstedt: Z. Immun.-Forsch. Allergie 1din. Immunol. 130, 54 (1966). Comparison of methods for purification of diphteria toxin with special reference to gel filtration and ion exchange chromatography.Google Scholar
  5. Salenstedt, C. R., and M. O. Tirunarayanan: ibid. 130, 190 (1966).Google Scholar
  6. Komorowska-Rycerz, A., A. Brühl, and R. Krauze: Bull. Acad. Polon. Sci. 14, 81 (1966).Google Scholar
  7. Latham, W. C., C. P. Jenness, and R. J. K. Timperi: J. Immunol. 95, 487 (1965). Purification of tetanus toxoid by gel filtration.Google Scholar
  8. Miller, K. D., and A. P. Marin: Proc. Soc. exp. Biol. Med. 118, 961 (1965). Gel-filtered media for purification of extracellular toxins.Google Scholar

Tabelle 54. Strukturproteine

  1. Kessen, G., und F. Amelunxen: Z. Naturforschung 19b, 346 (1964). Die Ribosomen von Pisum sativum. I. Aminosäureanalyse des Strukturproteins der Ribosomen nach Gelfiltration durch Sephadex.Google Scholar

Tabelle 55. Verschiedene Proteine

  1. François, C., and M. J. Glimcher: Biochim. biophys. Acta 97, 366 (1965). Fractionation of the cc-and (3-chains of collagen by Sephadex gel filtration.PubMedCrossRefGoogle Scholar
  2. Lukens, L. N.: Proc. natl. Acad. Sci. 55, 1235 (1966). The size of the polypeptide precursor of collagen hydroxyproline.PubMedCrossRefGoogle Scholar
  3. Focant, B., et J. F. Pechere: Arch. in Physiol. Biochim. 73, 334 (1965). Contribution a l’étude des protiénes de faible poids moléculaire des myogénes de vertébrés inférieurs. PECHÉRE, J. F., and B. FOCANT: Biochem. J. 96, 113 (1965). Carp myogens of white and red muscles.Google Scholar
  4. Thompson, E. O. P., and I. J. O’donell: Austr. J. biol Sci. 18, 1207 (1965). Studies on reduced wool.CrossRefGoogle Scholar
  5. Cruet, H. J.: Biochim biophys. Acta 54, 611 (1961). The fractionation of histones on Sephadex G-75.Google Scholar
  6. Bess, L. G., and L. S. Hnilica: Anal. Biochem. 12, 421 (1965). The heterogeneity of arginine-rich histones.Google Scholar
  7. Radola, B. J., G. Kellner, and J. S. Frimmel: Nature 207, 206 (1965). Gel filtration of isotopically labelled ferritin from HeLa cells.PubMedCrossRefGoogle Scholar
  8. Pulido, P., J. H. R. Kali, and B. L. Vallee: Biochemistry 5, 1768 (1966). Isolation and some properties of human metallothionein.Google Scholar
  9. Hardman, K. D., E. H. Eylar, D. K. Ray, L. J. Banaszak, and F. R. N. Gurd: J. biol. Chem. 241, 432 (1966). Isolation of sperm whale myoglobin by low temperature fractionation with ethanol and metallic ions.Google Scholar
  10. Hasegawa, K., T. Kusano, and H. Mitsuda: Agr. Biol. Chem. 27, 878 (1963). Fractionation of soybean proteins by gel filtration.CrossRefGoogle Scholar
  11. Escribano, M. J., H. Keilova, et P. Grabar: Biochim. Biophys. Acta 127, 94 (1966). Etude de la gliadine et de la glutenine après réduction ou oxydation.Google Scholar
  12. Sorof, S., E. M. Young, R. A. Mcbride, and C. B. Coffey. Arch. Biochem. Biophys. 113, 83 (1966). Size classes of soluble liver macromolecules.Google Scholar
  13. Binons, K., and T. Weber: .Biochim biophys. Acta 117, 201 (1966). The vitamin B12-binding protein in human leukocytes.Google Scholar

Tabelle 56. Vescbiedene Peptide

  1. Phillips, A.W., and P. A. Gibbs: Biochem. J. 81, 551 (1961). Techniques for the fractionation of microbiologically active peptides derived from casein.Google Scholar
  2. Determann, H. und O. Zipp: Liebigs Ann. Chem. 649, 203 (1961). Untersuchungen über die Plastein-Reaktion, III. Isolierung und Charakterisierung von weiteren Plastein-Bausteinen.Google Scholar
  3. Carnegie, P. R.: Biochem. J. 89, 459 (1963). Isolation of a homologue of glutathione and other acidic peptides from seedlings of Phaseolus aureus.Google Scholar
  4. Schmidt-Kastner, G.: Naturwissenschaften 51, 38 (1964). Die Trennung von Actinomycin-Gemischen durch Verteilungschromatographie an Sephadex.Google Scholar
  5. Mach, B., and E. L. Tatum: Proc. natl. Acad. Sci. 52, 876 (1964). Environmental control of amino acid substitutions in the biosynthesis of the antibiotic polypeptide tyrocidine.PubMedCrossRefGoogle Scholar
  6. Habermann, E., und K. G. Reiz: Biochem. Z. 341, 451 (1965). Ein neues Verfahren zur Gewinnung der Komponenten von Bienengift, insbesonders des zentralwirksamen Peptids Apamin.Google Scholar
  7. Shibnev, V. A., and V. G. Debabov: Chem Abstr. 61, 7097 a (1964). Regular polypeptide with glycyl-prolyl-hydroxyprolyl-sequence that is isomorphous with collagen.Google Scholar
  8. Engel, J., J. Kurtz, E. Katchalski, and A. Berger: J. mol. Biol. 17, 255 (1966). Polymers of tripeptides as collagen models. II. Conformational changes of poly(L-ProGly-L-Pro) in solution.Google Scholar
  9. Schneider, C. H., and A. L. de Weck: Nature 208 57 (1965). A new chemical aspect of penicillin allergy: the direct reaction of penicillin with s-aminogroups.Google Scholar
  10. Carnegie, P. R., and C. E. Lumsden: Nature 209, 1354 (1966). Encephalitogenic peptides from spinal cord.Google Scholar

Tabelle 57. Verschiedene Lipide

  1. Thureborn, E.: Nature 197, 1301 (1963). A water-soluble lipid complex obtained in the macromolecular phase by gel filtration of human bile.Google Scholar
  2. Nakayama, F., and H. Miyake: J. Lab. clin. Med. 65, 638 (1965). Cholesterol complexing by macromolecular fractions in human gall bladder bile.PubMedGoogle Scholar
  3. Nakayama, F.: Clin. chim. Acta 13, 212 (1966). Nature of cholesterol-complexing macro-molecular fractions in bile.PubMedCrossRefGoogle Scholar
  4. Feldman, E. B., and Borgström: Biochim. biophys. Acta 125, 136 (1966). Phase distribution of sterols: studies by gel filtration.Google Scholar
  5. Tipton, C. L., J.W. Paulis, and M. D. Pierson: J. Chromatog. 14, 486 (1964). Gel filtration of lipid mixtures.Google Scholar
  6. Nystrom, E., and J. Sjövall: Anal. Biochem. 12, 235 (1965). Separation of lipids on methylated Sephadex.Google Scholar
  7. Wieland, TH., G. Luben und H. Determann: Naturwissenschaften 51, 138 (1964). Adsorptionschromatographie an vernetzten Polymethylmethacrylat-Gelen.Google Scholar
  8. Daisley, K.W.: Nature 191, 868 (1961). Gel filtration of sea-water: separation of free and bound forms of vitamin B1. Google Scholar
  9. Kakei, M., and G. B. J. Glass: Proc. Soc. exp. Biol. Med. 111, 270 (1962). Separation of bound and free vitamin B. on Sephadex G-25 column.Google Scholar
  10. Kwon, T.W., and H. S. Olcort: Nature 210, 214 (1966). Malonaldehyde from the autoxidation of methyl linolenate.CrossRefGoogle Scholar
  11. Vihtco, R.: Acta Endocrinol. 52 Suppl. 109,15 (1966). Methylated Sephadex and Sephadex LH-20 in steroid separations.Google Scholar
  12. Sjövall, J., and R. Vihxo: Acta chem. scand. 20, 1419 (1966). Chromatography of conjugated steroids on lipophilic Sephadex.CrossRefGoogle Scholar

Tabelle 58. Huminsäuren und andere kondensierte Aromaten

  1. Posner, A. M.: Nature 198, 1161 (1963). Importance of electrolyte in the determination of molecular weights by Sephadex gel filtration, with especial reference to humic acid.Google Scholar
  2. Soukup, M.: Collect. czech. chem. Commun. 29, 3182 (1964). Separation of humic substances by gel filtration on Sephadex.Google Scholar
  3. Obenaus, R., und H.-J. Neumann: Naturwissenschaften 52, 131 (1965). Entsalzung von Huminsäuren an Sephadex G-25.Google Scholar
  4. Gjessing, E.T.: Nature 208, 1091 (1965). Use of Sephadex gel for the estimation of molecular weight of humic substances in natural water.CrossRefGoogle Scholar
  5. Bold; P.: Naturwissenschaften 51, 265 (1964). Zur Kenntnis des Trichosiderins eines Pigments aus roten Haaren.Google Scholar
  6. Ishiguro, I., and B. Linzen: Z. physiol. Chem. 340, 286 (1965). Preparative isolation and tritium-marking of 3-hydroxy-L-kynurenine.Google Scholar
  7. Lindberg, J. J., K. Penttinen, and C. Majani: Suomen Kuuistilektl Sect. B 38, 95 (1965). Gel filtration of lignins obtained by alkaline digestion of spruce wood.Google Scholar
  8. Altgelt, K. H.: Makromol. Chem. 88, 75 (1965). Fractionation of asphaltenes by gel permeation chromatography.CrossRefGoogle Scholar
  9. Altgelt, K. H.: J. appl. Polymer Sci. 9, 3389 (1965). Fractionation of asphaltenes by gel permeation chromatography.CrossRefGoogle Scholar
  10. Wilk, M., J. Rochlitz und H. Bende: J. Chromatog. 24, 414 (1966). Säulenchromatographie von polycyclischen aromatischen Kohlenwasserstoffen an lipophilem Sephadex LH-20.CrossRefGoogle Scholar

Tabelle 59. Gelchromatographie in der Getränkeindustrie

  1. Nummi, M., und T.-M. Enari: Brauwissenschaft 15, 203 (1962). Die Fraktionierung von Gerstenalbuminen durch Gelfiltration und Papierelektrophorese.Google Scholar
  2. Nummi, M., R. Vilhunen, and T.-M. Enari: Acta chem. scand. 19, 1793 (1965). Exclusion chromatography of barley (3-amylase on Sephadex G-75.CrossRefGoogle Scholar
  3. Woof, J. B.: Nature 195, 184 (1962). Investigation of phenolic components of brewing materials by gel filtration.Google Scholar
  4. Djurtoft, R.: European Brewery Convention. Proc. of VIIIth int. Congress, Vienna, 1961, 298. Fractionation of beer constituents by gel filtration.Google Scholar
  5. Raible, K., und J. Engelhardt: Brauwissenschaft 18, 398 (1965). Die Schaumwirkung von Alginaten in Bier.Google Scholar
  6. Wucherpfennig, K., und I. Franke: Brauwissenschaft 18,132 (1965). Beitrag zur analytischen Kontrolle von Stabilisierungsmaßnahmen bei Bier mit Hilfe der Gelfiltration unter besonderer Berücksichtigung des Eiweißabbaues durch Fermente.Google Scholar
  7. Wucherpfennig, K., und I. Franke: Z. Lebensmittr Untersuch. Forschung 124, 22 (1963). Auftrennung von Weininhaltsstoffen durch Gelfiltration.Google Scholar
  8. Somers, T. C.: Nature 209, 368 (1966). Wine tannins-isolation of condensed flavonoid pigments by gel filtration.PubMedCrossRefGoogle Scholar
  9. Wucherpfennig, K., und I. Franke: Die Weinwissenschaft 19, 362 (1964). Beitrag zur Bestimmung einer Kennzahl für Polyphenole in Weinen durch Gelfiltration.Google Scholar
  10. Streuli, H.: Chimia 16, 371 (1962). Fraktionierung von Farb-und Geschmacksstoffen des Röstkaffees mittels Sephadex G-25.Google Scholar
  11. Obenaus, R., H.-J. Neumann und D. Mücke: Naturwissenschaften 53, 19 (1966). Bestimmung des Huminsäuregehaltes in Kaffee-Extrakten nach der Gelfiltration an Sephadex G-25.Google Scholar

Tabelle 60. GeIchromatographie in der Lebensmittelindustrie

  1. de Koning, P. J.: Neth. Milk and Dairy J. 16, 210 (1962). Gel filtration, a new method applied for the preparation of lactose-free milk.Google Scholar
  2. Lindqvist, B.: Proc. XVIth int. Dairy Congress, Copenhagen 1962, S. 673. Preparative separation of high molecular peptides of cheese.Google Scholar
  3. George, W. H. S.: Nature 195,155 (1962). Separation of strontium from milk and protein solutions by gel filtration.Google Scholar
  4. Chandan, R. C., and K. M. Shahani: J. Diary Sci. 45, 645 (1962). Purification and characterization of milk lipase.CrossRefGoogle Scholar
  5. Coatis-Jones, B.: Int. Sugar J. 64, 133 (1962); 64, 165 (1962). Methods for fractionation of impurities in cane juice and mill syrups.Google Scholar
  6. Stinson, E. E., and C. O. Willits: J. Ass. off. agricult. Chem. 46, 329 (1963). Separation of caramel colour from salts and sugar by gel filtration.Google Scholar
  7. Rother, H.: Dtsch. Lebensmittel-Rdsch. 62, 108 (1966). Über den Nachweis von Zuckerkulör mit Hilfe der Gelfiltration.Google Scholar
  8. Wright Jr., H. E., W.W. Burton, and R. C. Berry, Jr.: Phytochemistry 3, 525 (1964). Soluble browning reaction pigments of aged Burley tobacco. II. The dialysable fraction. Vgl. auch Nature 202, 1210 (1964). Isolation of tryptophan from air cured tobacco by gel filtration.Google Scholar
  9. Abbott, D. C., and J. A. Johnson: J. Food Sci. 31, 38 (1966). Gel filtration of the water-soluble protein fraction of wheat flour.CrossRefGoogle Scholar

Literatur

  1. 1.
    Gelotte, B., and A. B. Krantz: Acta chem. stand. 13, 2127 (1959).CrossRefGoogle Scholar
  2. 2.
    Tipton, K. F.: Biochim. biophys. Acta 92, 341 (1964).PubMedGoogle Scholar
  3. 3.
    Toro-Goyco, E., and M. Matos: Nature 210, 527 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    Ota, S., S. Moore, and W. H. Stein: Biochemistry 3, 180 (1964).PubMedCrossRefGoogle Scholar
  5. 5.
    Siebert, G., A. Schnitt und R. v. Malortie: Z. physiol. Chem. 342, 20 (1965).Google Scholar
  6. 6.
    Keller, S., and I. Mandl: Arch. Biochem. Biophys. 101, 81 (1963).PubMedCrossRefGoogle Scholar
  7. 7.
    Lanchantin, G. F., J. A. Friedmann, and D.W. Hart: J. biol. Chem. 240, 3276 (1965).PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jones, G., S. Moore, and W. H. Stein: Biochemistry 2, 66 (1963).PubMedCrossRefGoogle Scholar
  9. 9.
    Appel, W.: Z. physiol. Chem. 330, 193 (1963).CrossRefGoogle Scholar
  10. 10.
    Peanasky, R. J., and M. M. Szucs: J. biol. Chem. 239, 2525 (1964).PubMedCrossRefGoogle Scholar
  11. 11.
    Fritz, H., G. Hartlaich und E. Werle: Z. physiol. Chem. 345, 150 (1966).CrossRefGoogle Scholar
  12. 12.
    Pettersson, G., E. B. Cowling, and J. Porath: Biochim biophys. Acta 67, 1 (1963).PubMedCrossRefGoogle Scholar
  13. 13.
    Pettersson, G., E. B. Cowling, and J. Porath: Biochim. biophys. Acta 77, 665 (1963).CrossRefGoogle Scholar
  14. 14.
    Selby, K., and C. C. Maitland: Biochem. J. 94, 578 (1965).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Craven, G. R., E. Steers Jr., and C. B. Anfinsen: J. biol. Chem. 240, 2468 (1965).PubMedCrossRefGoogle Scholar
  16. 16.
    Lester, G., and A. Byers: Biochem. biophys. Res. Commun. 18, 725 (1965).CrossRefGoogle Scholar
  17. 17.
    Brodbeck, U., and K. E. Ebner: J. biol. Chem 241, 762 (1966).PubMedCrossRefGoogle Scholar
  18. 18.
    Li, Y.-T.: J. biol. Chem. 241, 1010 (1966).PubMedCrossRefGoogle Scholar
  19. 19.
    Shainkin, R., and Y. Birk: Biochim. biophys. Acta 122, 153 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    Pleiderer, G., und F. Auricchio: Biochem. biophys. Res. Commun. 16, 53 (1964).Google Scholar
  21. 21.
    Coleman, J. E., and B. L. Vallee: J biol. Chem. 237, 3430 (1962).PubMedCrossRefGoogle Scholar
  22. 22.
    Folk, J. E., and J. A. Gladner: Biochim biophys. Acta 48, 139 (1961).PubMedCrossRefGoogle Scholar
  23. 23.
    Colobert, L., and G. Dirheimer: Biochim. biophys. Acta 54, 455 (1961).PubMedCrossRefGoogle Scholar
  24. 24.
    Kuboyama, M., S. Takemori, and T. E. King: Biochem. biophys. Res. Commun. 9, 534 (1962).PubMedCrossRefGoogle Scholar
  25. 25.
    Wool, H. G., H. Lochmüller, C Riepertinger und F. Lynen: Biochem. Z. 337, 247 (1963).Google Scholar
  26. 26.
    Numa, S., E. Ringelmann und F. Lynen: Biochem. Z. 340, 228 (1964).PubMedGoogle Scholar
  27. 27.
    Stonehill, E. H., and M. E. Balls: Anal. Biochem. 10, 486 (1965).CrossRefGoogle Scholar
  28. 28.
    Birnboim, H.: Biochim. biophys. Acta 119, 198 (1966).PubMedCrossRefGoogle Scholar
  29. 29.
    Lindner, E. B., A. Elmqvist, and J. Porath: Nature 184, 1565 (1959).Google Scholar
  30. 30.
    Hope, D. B., B. A. Schacter, and B. T. B. Frankland: Biochem. J. 93, 7P (1964); vgl. Brit. J. Pharmacol. 26, 502 (1966).Google Scholar
  31. 31.
    Ginsburg, M., and M. Ireland: J. Endocrinol. 30, 131 (1964).PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Schallt, A.V., and R. Guillemin: .J biol. Chem. 239, 1038 (1964).Google Scholar
  33. 33.
    Yamashiro, D., H. L. Aanning, and V. Duvigneaud: Proc. natl. Acad. Sci. 54, 166 (1965).PubMedCrossRefGoogle Scholar
  34. 34.
    SJ. Holm, I.: Acta chem. scand. 18, 889 (1964).CrossRefGoogle Scholar
  35. 35.
    Preddie, E. C., and M. Saffran: J. biol. Chem. 240, 4189 (1965).PubMedCrossRefGoogle Scholar
  36. 36.
    Lande, S., A. B. Lerner, and G.V. Upton: J. biol. Chem. 240, 4259 (1965).PubMedCrossRefGoogle Scholar
  37. 37.
    Humbel, R E: Biochem. biophys. Res. Commun. 12, 333 (1963).PubMedCrossRefGoogle Scholar
  38. 38.
    Epstein, C. J., and C. B. Anfinsen: Biochemistry 2, 461 (1963).PubMedCrossRefGoogle Scholar
  39. 39.
    Davoren, P. R.: Biochim. biophys. Acta 63, 150 (1962).PubMedCrossRefGoogle Scholar
  40. 40.
    Abdel Wahab, M. F., and S. A. El-Kinawi: Intern. J. appl. Radiation and Isotopes, 16, 668 (1965).Google Scholar
  41. 41.
    Manipol, V., and H. Spitzt: Intern. J. appl. Radiation and Isotopes 13, 647 (1962).CrossRefGoogle Scholar
  42. 42.
    Toro-Gtrrco, E., M. Martinez-Maldonado, and M. Matos: Proc. Soc. exptl. Biol. Med. 122, 301 (1966).Google Scholar
  43. 43.
    Alp, H., H. Chaplin, and L. Recant: J. clin. endocrinol. Metab. 26, 340 (1966).PubMedCrossRefGoogle Scholar
  44. 44.
    Biirgi, H., W. A. Müller, R. E. Humbel, A. Labhart, and E. R. Froesch: Biochim biophys. Acta 121, 349 (1966).CrossRefGoogle Scholar
  45. 45.
    Leach, S. J., J. M. Swan, and L. A. Holt: Biochim biophys. Acta 78, 196 (1963).PubMedCrossRefGoogle Scholar
  46. 46.
    Zahn, H., B. Gurte, E. F. Pfeiffer und J. Ammon: Liebigs Ann. Chem. 691, 225 (1966).CrossRefGoogle Scholar
  47. 47.
    Zahn, H., H. Bremer und R. Zabel: Z. Naturforschung 20b, 653 (1965).CrossRefGoogle Scholar
  48. 48.
    Tauber, S., and L. L. Madison: J. biol Chem. 240, 645 (1965).PubMedCrossRefGoogle Scholar
  49. 49.
    Killander, J.: Biochim. biophys. Acta 93, 1 (1964). PubMedCrossRefGoogle Scholar
  50. 50.
    Lionetti, F. J., C. R. Valeri, J. C. Bond, and N. L. Fortier: J. Lab. clin. Med. 64, 519 (1963).Google Scholar
  51. 51.
    Mehl, J.W., W. O’connell, and J. Degroot: Science 145, 821 (1964).Google Scholar
  52. Ganrot, P. O.: Clin. chim. Acta 13, 596 (1966).Google Scholar
  53. 53.
    Fireman, P., E. Hershgold, F. Cordoba, K. Schmid, and D. Gitlin: Nature 203, 78 (1964).Google Scholar
  54. 54.
    Milstein, C.: Nature 205, 1171 (1965).CrossRefGoogle Scholar
  55. 55.
    Hilschmann, N., and L. C. Craig: Biochemistry 4, 5 (1965).PubMedCrossRefGoogle Scholar
  56. 56.
    Baglioni, C., M. Lavia, and V. Ventruto: Biochim. biophys. Acta 111, 479 (1965).PubMedCrossRefGoogle Scholar
  57. 57.
    Press, E. M., and R. R. Porter, Biochem. J. 83, 172 (1962).PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bengtsson, C., L. A. Hanson, and B. G. Johansson: Acta chem. scand. 16,127 (1962).CrossRefGoogle Scholar
  59. 59.
    Gross, E., and B. Witkop: J. biol. Chem. 237, 1856 (1962).PubMedCrossRefGoogle Scholar
  60. 60.
    Edmundson, A. B.: Nature 198, 354 (1963).CrossRefGoogle Scholar
  61. 61.
    Black, J. A., and G. Leaf: Biochem. J. 96, 693 (1965).PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Biseate, G., et Y. Moschetto: C. R. Acad. Sci. (Paris) 255, 3263 (1962).Google Scholar
  63. 63.
    van Hoang, D., M. Rovery, and P. Desnuelle: Biochim. biophys. Acta 58, 613 (1962).CrossRefGoogle Scholar
  64. 64.
    Jung, H., und H. Schüssler: Z. Naturforschung 21b, 224 (1966).CrossRefGoogle Scholar
  65. 65.
    Carnegie, P. R.: Nature 206, 1128 (1965).PubMedCrossRefGoogle Scholar
  66. 66.
    Anderer, F. A.: Z. Naturforschung 20b, 462 (1965).CrossRefGoogle Scholar
  67. 67.
    Fazakerley, S., and D. R. Best: Anal. Biochem. 12, 290 (1965).PubMedCrossRefGoogle Scholar
  68. 68.
    Fasold, H.: Biochem. Z. 342, 288 (1965).PubMedGoogle Scholar
  69. 69.
    Shepherd, G. R., and D. F. Petersen: J. Chromatog. 9, 445 (1962).CrossRefGoogle Scholar
  70. 70.
    Boman, H. G., and S. Hjertén: Arch. Biochem. Biophys. Suppl. 1, 276 (1962).Google Scholar
  71. 71.
    Dirheimer, G., J.-H. Weil, and J.-P. Ebel: .C R Acad. Sci. (Paris) 255, 2312 (1962).Google Scholar
  72. 72.
    Bosch, L., G. van der Wende, M. Sluyser, and H. Bloemendal: Biochim. biophys. Acta 53, 44 (1961).Google Scholar
  73. 73.
    Schleich, T., and J. Goldstein: Proc. natl. Acad. Sci. 52, 744 (1964).PubMedCrossRefGoogle Scholar
  74. 74.
    Virmaux, N., P. Mandel, and P. F. Urban: Biochem. biophys. Res. Commun. 16, 308 (1964).PubMedCrossRefGoogle Scholar
  75. 75.
    Zachau, H. G.: Biochim. biophys. Acta 108, 355 (1965).PubMedCrossRefGoogle Scholar
  76. 76.
    Röschenthaler, R., and P. Fromageot: J. mol. Biol. 11, 458 (1965).CrossRefGoogle Scholar
  77. 77.
    Bell, W. C., und R. Engler: Arch. ges. Virusforschung 15, 109 (1964).CrossRefGoogle Scholar
  78. 78.
    Oeberg, B., S. Bengtsson, and L. Philipson: Biochem. biophys. Res. Commun. 20, 36 (1965).CrossRefGoogle Scholar
  79. 79.
    Attardi, G., P. C. Hoang, and S. Kabat: Proc. natl. Acad. Sci. 53, 1490 (1965).PubMedCrossRefGoogle Scholar
  80. 80.
    Hayes, F. N., E. Hansbury, and V. E. Mitchell: J. Chromatog. 16, 410 (1964).CrossRefGoogle Scholar
  81. 81.
    Jones, O.W., E. E. Townsend, H. A. Sober, and L. A. Heppel: Biochemistry 3, 238 (1964).PubMedCrossRefGoogle Scholar
  82. 82.
    Matheka, H.-D., und G. Wittmann: Zbl. Bakt. 182, 142 (1961).Google Scholar
  83. 83.
    Beiss, U., und R. Marx: Naturwissenschaften 49, 95 (1962).CrossRefGoogle Scholar
  84. 84.
    Inglot, A. D., J. Lisowbki, and E. Niedzwiedzka: Acta virol. 8, 541 (1964).PubMedGoogle Scholar
  85. 85.
    Steere, R. L.: Science 140, 3571 (1963).CrossRefGoogle Scholar
  86. 86.
    Bengtsson, S., and L. Philipson: Biochim. biophys. Acta 79, 399 (1964).PubMedCrossRefGoogle Scholar
  87. 87.
    Fridborg, K., S. Hjertén, S. Höglund, A. Liljas, B. K. S. Lundberg, P. Oxelfelt, L. Philipson, and B. Strandberg: Proc. natl. Acad. Sci. 54, 513 (1965).PubMedCrossRefGoogle Scholar
  88. 88.
    Haller, W: .Nature 206, 693 (1965).Google Scholar
  89. 89.
    Granath, K.: in James, Morris (Ed.) New Biochemical Separations, 93. London 1964.Google Scholar
  90. 90.
    Granath, K.: Abhandlungen der dtsch. Akad. Wissensch. (Berlin) 1964, 91.Google Scholar
  91. 91.
    Anderson, D. M.W., I. C. M. Dea, S. Rahman, and J. F. Stoddart: Chem. Commun. 1965, 145.Google Scholar
  92. 92.
    Nordin, P.: Arch. Biochem. Biophys. 99, 101 (1962).PubMedCrossRefGoogle Scholar
  93. 93.
    Heller, J, und M. Schramm: Biochim biophys. Acta 81, 96 (1964).Google Scholar
  94. 94.
    Kringstad, E., und OE. Ellefsen: Das Papier 18, 583 (1964).Google Scholar
  95. 95.
    Schmidt, M., und A. Dmocxowski: Biochim. biophys. Acta 83, 137 (1964).PubMedGoogle Scholar
  96. 96.
    Ringertz, N. R., and P. Reichard: Acta, chem. scand. 14, 303 (1960).CrossRefGoogle Scholar
  97. 97.
    Ricketts, C. R.: Nature 210, 1113 (1966).Google Scholar
  98. 98.
    Schlubach, H. H., und R. Ziegler: Liebigs Ann. Chem. 677, 165 (1964).CrossRefGoogle Scholar
  99. 99.
    Sanderson, A. R., J. L. Strominger, and S. G. Nathenson: J. biol. Chem. 237, 3603 (1962).PubMedCrossRefGoogle Scholar
  100. 100.
    Ghuysen, J.-M., D. J. Tipper, and J. L. Strominger: Biochemistry 4, 474 (1965).PubMedCrossRefGoogle Scholar
  101. 101.
    Wicken, A. J., and J. Baddiley: Biochem. J. 87, 54 (1963).PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Oestling, G.: Acta soc. med. Upsaliensis 64, 222 (1960).Google Scholar
  103. 103.
    Bill, A., N. Marsden, and H. R. Ulfendahl: Seand. J. clin. Lab. Invest. 12, 392 (1960).CrossRefGoogle Scholar
  104. 104.
    Jacobsson, L.: Clin. chim. Acta 7, 180 (1962).PubMedCrossRefGoogle Scholar
  105. 105.
    Davidson, W. D., M. A. Sackner, and M. H. Davidson: J. Lab. clin. Med. 62, 501 (1963).PubMedGoogle Scholar
  106. 106.
    Mertz, D. P., und H. E. Franz: Klinische Wochenschrift 42, 555 (1964).PubMedCrossRefGoogle Scholar
  107. 107.
    Hennrich, N., A. Hoffmann und H. Lang: Arzneimittel-Forschung 15, 434 (1965).PubMedGoogle Scholar
  108. 108.
    Ford, J. E.: Brit. J. Nutr. 19, 277 (1965).PubMedCrossRefGoogle Scholar
  109. 109.
    Patrick, R. L., and R. E. Triers: Clin. Chem. 9, 283 (1963).PubMedCrossRefGoogle Scholar
  110. 110.
    Mcevoy-Bowe, E., and S. Sarojini Thevi: Clin. Chem. 12, 144 (1966).PubMedCrossRefGoogle Scholar
  111. 111.
    Shapiro, B., and J. L. Rabinowitz: J. nuclear Med. 3, 417 (1962).Google Scholar
  112. 112.
    Stumpf, W., und E. H. Graul: Med. Klin. 58, 192 (1963).Google Scholar
  113. 113.
    Rabinowitz, J. L., B. Shapiro, and P. Johnson: J. nucl. Med. 4, 139 (1963).PubMedGoogle Scholar
  114. 114.
    Graul, E. H., und W. Stumpf: Dtsch. med. Wschr. 88, 1886 (1963).PubMedCrossRefGoogle Scholar
  115. 115.
    Lissitzky, S., and J. Bismuth: Clin. chim. Acta 8, 269 (1963).PubMedCrossRefGoogle Scholar
  116. 116.
    Mougey, E. H., and J.W. Mason: Anal. Biochem. 6, 223 (1963).PubMedCrossRefGoogle Scholar
  117. 117.
    Liewendahl, K., and B.-A. Lamberg: J. clin. Endocrinol. Metab. 25, 991 (1965).PubMedCrossRefGoogle Scholar
  118. 118.
    Murphey, B. E. P., and CH. J. Pattée: J. clin. Endocrinol. Metab. 24, 187 (1964).CrossRefGoogle Scholar
  119. 119.
    Makowetz, E., K. Müller, and H. Spitzy: Microchem. J. 10, 194 (1966).CrossRefGoogle Scholar
  120. 120.
    Hocman, G.: J. Chromatog. 21, 413 (1966).CrossRefGoogle Scholar
  121. 121.
    121. Beling, C. G.: Nature 192, 326 (1961).PubMedCrossRefGoogle Scholar
  122. 122.
    Beling, C. G.: Periodica, Copenhagen 1963.Google Scholar
  123. 123.
    Kushinsky, S., and I. Otterness: Steroids 3, 311 (1964).Google Scholar
  124. 124.
    Eechaute, W.: Clin. chim. Acta 10, 379 (1964).PubMedCrossRefGoogle Scholar
  125. 125.
    Eechaute, W., and G. Demeester: J. clin. Endocrinol. Metab. 25, 480 (1965).PubMedCrossRefGoogle Scholar
  126. 126.
    Strauch, L., und W. Grassmann: Z. physiol. Chem 344, 140 (1966).CrossRefGoogle Scholar
  127. 127.
    White, W. F., G. H. Barlow, and M. M. Mozen: Biochemistry 5, 2160 (1966).PubMedCrossRefGoogle Scholar
  128. 128.
    Peart, W. S., A. M. Lloyd, G. N. Thatcher, A. F. Lever, N. Payne, and N. Stone: Biochem. J. 99, 708 (1966).PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Campbell, B. J., Y.-C. Lin, R. V. Davis, and E. Ballew: .Biochim. biophys. Acta 118, 371 (1966).PubMedGoogle Scholar
  130. 130.
    Félix, F., et N. Broulliet: Biochim. biophys. Acta 122, 127 (1966).PubMedCrossRefGoogle Scholar
  131. 131.
    Crestfield, A. M., S. MooRE, and W. H. STEIN: J. biol. Chem. 238, 622 (1963).PubMedGoogle Scholar
  132. 132.
    Varandani, P. T.: Biochim biophys. Acta 127, 246 (1966).PubMedCrossRefGoogle Scholar
  133. 133.
    Adams-Mayne, M. E., and B. Jirgensons: Arch. Biochem. Biophys. 113, 575 (1966).PubMedCrossRefGoogle Scholar
  134. 134.
    Gross, E., and B. Witkop: Biochem. biophys. Res. Commun. 23, 760 (1966).CrossRefGoogle Scholar
  135. 135.
    Cooke, J. P., C. B. Anfinsen, and M. Sela: J. biol. Chem. 238, 2034 (1963).PubMedCrossRefGoogle Scholar
  136. 136.
    Konigsberg, W., K. Weber, C. Notani, and N. Zinder: J. biol. Chem. 241, 2579 (1966).PubMedCrossRefGoogle Scholar
  137. 137.
    Meyer, J. G.: Z. Naturforschg. 21b, 342 (1966).CrossRefGoogle Scholar
  138. 138.
    Schleich, T., and J. Goldstein: J. mol. Biol. 15, 136 (1966).PubMedCrossRefGoogle Scholar
  139. 139.
    Bachvaroff, R. J., and V. Tongur: Nature 211, 248 (1966).PubMedCrossRefGoogle Scholar
  140. 140.
    Delihas, N., and M. Staehelin: Biochim. biophys. Acta 119, 385 (1966).PubMedCrossRefGoogle Scholar
  141. 141.
    Bresler, S., R. Gravejevskaja, S. Kirilov, E. Saminski, and F. Shutov: Biochim. biophys. Acta 123, 534 (1966).PubMedCrossRefGoogle Scholar
  142. 142.
    Erikson, R. L., and J. A. Gordon: Biochem. biophys. Res. Commun. 23, 422 (1966).PubMedCrossRefGoogle Scholar
  143. 143.
    Barker, S. A., and N. M. Young: Carbohydrate Res. 2, 49 (1966).CrossRefGoogle Scholar
  144. 144.
    Barker, S. A., S. M. Bilk, and J. S. Brimacombe: Carbohydrate Res. 1, 393 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  1. 1.Institut für Organische ChemieUniversität Frankfurt am MainDeutschland

Personalised recommendations