Advertisement

Introduction

  • Helmut Determann

Abstract

Next to chemical composition, size and weight are the most significant properties of a molecule. Molecular weight is frequently the decisive parameter that distinguishes molecules. Differences in molecular size play a role in all conventional physical separation methods. The higher homologues of a series usually show higher melting and boiling points as well as lower solubility than the lower compounds of similar structure. For all practical purposes these differences overlap with other properties such as polarity or electrical charge density which determine the behavior of a substance during crystallization, distillation, extraction or most chromatographic methods of separation. Sorting by size is a very common ordering principle in the macroscopic world. At the molecular level it was applied relatively late and in only a few isolated cases. Moreover, it is naturally also true for separations based on differences in molecular weight that factors other than the difference in molecular size may play a role.

Keywords

Molecular Size Electrical Charge Density Molecular Weight Difference Lignosulfonic Acid High Gravity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svedberg, T., and K. O. Pedersen: The Ultracentrifuge. Oxford: University Press 1940.Google Scholar
  2. Schachmann, H. K.: Ultracentrifugation in Biochemistry. New York: Academic Press 1959.Google Scholar
  3. 2.
    Hermans, J. J., and H. A. Ende in B. K8 (Ed.): Newer Methods of Polymer Characterisation, p. 525. New York: Interscience 1964.Google Scholar
  4. K. Trautmann in D. W. Newman (Ed.): Instrumental Methods of Experimental Biology, p. 211. New York: MacMillan 1964.Google Scholar
  5. 3.
    Barrer, R. M.: Ber. Bunsenges. Physik. Chem. 69, 787 (1965).Google Scholar
  6. 4.
    Barrer, R. M.: Endeavour 23, 122 (1964).CrossRefGoogle Scholar
  7. 5.
    Barrer, R. M.: British Chem. Engng. 7, 267 (1959).Google Scholar
  8. 6.
    Scheuermann, E. A.: Chemiker-Ztg. 20, 767 (1961).Google Scholar
  9. 7.
    Graham, TH.: Phil. Trans. Roy. Soc., London, 151, 183 (1861).CrossRefGoogle Scholar
  10. 8.
    Craig, L. C., and W. Konigsberg: J. Phys. Chem. 65, 166 (1961).CrossRefGoogle Scholar
  11. 9.
    Pierce, J. G., and C. A. Free: Biochim. Biophys. Acta 48, 436 (1961).CrossRefGoogle Scholar
  12. 10.
    Rosenfeld, M.: Biochim. Biophys. Acta 75, 241 (1963).CrossRefGoogle Scholar
  13. 11.
    Ackers, G. K., and R. L. Steere: Biochim. Biophys. Acta 59, 137 (1962).CrossRefGoogle Scholar
  14. 12.
    Russell, B., J. Levitt, and A. Polson: Biochim. Biophys. Acta 79, 622 (1964).Google Scholar
  15. 13.
    Craig, L. C., and A. O. Pulley: Biochemistry 1, 89 (1962).CrossRefGoogle Scholar
  16. 14.
    Craig, L. C., and A. O. Pulley: Biochemistry 2, 1268 (1963).CrossRefGoogle Scholar
  17. Craig, L. C., and A. O. Pulley: Biochemistry 3, 764 (1964).Google Scholar
  18. 16.
    Craig, L. C., and A. O. Pulley: Adv. Anal. Chem. Instr. 4, 35 (1965).Google Scholar
  19. Synge, R. L. M., and M. A. Youngson: Biochem. J. 78, 31 P (1961).Google Scholar
  20. 18.
    Signer, R., H. Hänni, W. Koestler, W. Rottenburg und P. V. Tavel: Hely. Chim. Acta 29, 1894 (1946).Google Scholar
  21. 19.
    Craig, L. C., and T. P. King: J. Am. Chem. Soc. 77, 6620 (1955)CrossRefGoogle Scholar
  22. Craig, L. C., and T. P. King: J. Am. Chem. Soc. 78, 4171 (1956).CrossRefGoogle Scholar
  23. 20.
    Wieland, TH., H. Determann und E. Albrecht: Liebigs Ann. Chem. 633, 185 (1960).CrossRefGoogle Scholar
  24. 21.
    Mould, D. L., and R. L. M. Synge: Biochem. J. 58, 571 (1954).Google Scholar
  25. 22.
    Allison, A. C., and J. H. Humphrey: Nature 183, 1590 (1959).CrossRefGoogle Scholar
  26. 23.
    Smithies, O.: Biochem. J. 61, 629 (1955).Google Scholar
  27. 24.
    Smithies, O.: Arch. Biochem. Biophys. Suppl. 1, 125 (1962).Google Scholar
  28. 25.
    Toms, M. P.: Anal. Biochem. 13, 121 (1965).CrossRefGoogle Scholar
  29. 26.
    Ornstein, L.: Ann. N. Y. Acad. Sci. 121, 321 (1964)CrossRefGoogle Scholar
  30. B. J. Davis: ibid. 121, 404 (1964).Google Scholar
  31. 27.
    Staupf, J.: Kolloidchemie, p. 665 if. Berlin-Göttingen-Heidelberg: Springer 1960.CrossRefGoogle Scholar
  32. 28.
    Hermans, P. H.: Gels, in H. R. Kruyt (Ed.): Colloid Science, Vol. 2, p. 483. Amsterdam: Elsevier 1949.Google Scholar
  33. 29.
    Stauff, J.: Kolloidchemie, p. 669 ff. Berlin-Göttingen-Heidelberg: Springer 1960.CrossRefGoogle Scholar
  34. 30.
    Porath, J., and P. Flodin: Nature 183, 1657 (1959).CrossRefGoogle Scholar
  35. 31.
    Fasold, H., G. Gundlach, and F. Turba in E. Heftmann (Ed.): Chromatography, p. 406. New York: Reinhold 1966.Google Scholar
  36. 32.
    Pedersen, K. O.: Arch. Biochem. Biophys., Suppl. 1, 157 (1962).Google Scholar
  37. 33.
    Hjerten, S., and R. Mosbach: Anal. Biochem. 3, 109 (1962).CrossRefGoogle Scholar
  38. 34.
    Moore, J. C.: J. Polym. Sci., Part A 2, 835 (1964).Google Scholar
  39. 35.
    Determann, H.: Angew. Chemie 76, 635 (1694)CrossRefGoogle Scholar
  40. Determann, H.: Angew. Chem. Internat. Ed. 3, 608 (1964).Google Scholar
  41. 36.
    Samuelson, O., Ref. in W. Lautsch: Angew. Chem. 57, 149 (1944).Google Scholar
  42. 37.
    Rauen, H. M., und K. Felix: Z. Physiol. Chem. 283, 139 (1948).CrossRefGoogle Scholar
  43. 38.
    Kunin, R., and R. J. Meyers: Discuss. Faraday Soc. 7, 114 (1949).CrossRefGoogle Scholar
  44. 39.
    Richardson, R. W.: Nature 164, 916 (1949).CrossRefGoogle Scholar
  45. 40.
    Kunin, R., and R. J. Meyers: J. Chem. Soc. 1951, 910.Google Scholar
  46. 41.
    Thompson, A. R.: Nature 169, 495 (1952).CrossRefGoogle Scholar
  47. 42.
    Partridge, S. M.: Nature 169, 496 (1952).CrossRefGoogle Scholar
  48. 43.
    Deuel, H., J. Solms und L. Anyas-Weisz: Helv. Chim. Acta 33, 2171 (1950).CrossRefGoogle Scholar
  49. 44.
    Mires, J. A.: J. Polym. Sci. 30, 615 (1958).CrossRefGoogle Scholar
  50. 45.
    Wheaton, R. M., and W. C. Baumann: Ann. New York Acad. Sci. 57, 159 (1953).CrossRefGoogle Scholar
  51. 46.
    Clark, R. T.: Analytic. Chem. 30, 1676 (1958).CrossRefGoogle Scholar
  52. 47.
    Tiselius, A.: Naturwiss. 37, 25 (1950)CrossRefGoogle Scholar
  53. Tiselius, A.: Adv. Prot. Chem. 3, 67 (1947).CrossRefGoogle Scholar
  54. 48.
    Deuel, H., and H. Neukom: Adv. in Chemistry Series 11, 51 (1954).Google Scholar
  55. 49.
    Lindqvist, B., and T. Storgnrds: Nature 175, 511 (1955).CrossRefGoogle Scholar
  56. 50.
    Lathe, G. H., and C. R. J. Ruthven: Biochem. J. 62, 665 (1956).Google Scholar
  57. 51.
    Polson, A.: Biochim. Biophys. Acta 19, 53 (1956).CrossRefGoogle Scholar
  58. 52.
    Porath, J.: Clin. Chim. Acta 4, 776 (1959).CrossRefGoogle Scholar
  59. 53.
    Björk, W., and J. Porath: Acta Chem. Scand. 13, 1256 (1959).CrossRefGoogle Scholar
  60. 54.
    Flodin, P.: Dextran Gels and their Applications in Gel Filtration. Dissertation. Uppsala 1962.Google Scholar
  61. 55.
    Polson, A.: Biochim Biophys. Acta 50, 565 (1961).Google Scholar
  62. 56.
    Steere, R. L., and G. K. Ackers: Nature 196, 475 (1962)CrossRefGoogle Scholar
  63. Steere, R. L., and G. K. Ackers: Nature 194, 114 (1962).CrossRefGoogle Scholar
  64. 57.
    Hjerten, S.: Arch. Biochem. Biophys. 99, 466 (1962).CrossRefGoogle Scholar
  65. 58.
    Vaughan, M. F.: Nature 188, 55 (1960).CrossRefGoogle Scholar
  66. 59.
    Coatis-Jones, B.: Nature 191, 272 (1961).CrossRefGoogle Scholar
  67. 60.
    Brewer, P. J.: Nature 188, 934 (1960); 190, 625 (1961).CrossRefGoogle Scholar
  68. 61.
    Determann, H., G. Lüben und TH. Wieland: Makromol. Chem. 73, 168 (1964).CrossRefGoogle Scholar
  69. 62.
    Kunin, R., E. Meitzner, and N. Bdrtnlck: J. Am. Chem. Soc. 84, 305 (1962)CrossRefGoogle Scholar
  70. Kunin, R., E. F. Meitzner, J. A. Oline, S. A. Fisher, and V. Frisch: I and EC Prod. Res. Develop. 1, 140 (1962)Google Scholar
  71. Kunin, R., E. F. Meitzner, J. A. Oline, S. A. Fisher, and V. Frisch: Brit. Pats. 932 120 (1962)Google Scholar
  72. 63.
    Millar, J. R., D. G. Smith, W. E. Mark, and T. R. E. Kressman: J. Chem. Soc. 1963, 219.Google Scholar
  73. Millar, J. R., D. G. Smith, W. E. Mark, and T. R. E. Kressman: Brit. Pat. 849 122.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • Helmut Determann
    • 1
  1. 1.Institut für Organische ChemieUniversität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations