Skip to main content

A Biomolecular Survey of Calcification

  • Chapter
Calcified Tissues 1965

Abstract

Deposits of inorganic calcium salts are so familiar to biologists that they seldom warrant close attention and are dismissed frequently as waste products. In spite of an increasing awareness that mineralization is a highly organized process, however, it is immediately apparent from the literature that we derive most of our ideas about the ultrastructural basis of calcification from studies of bone. There is little correlative data from other tissues containing calcium phosphate, and the few publications on the molecular structures associated with calcium carbonate in invertebrates are sufficient to emphasize the lack of information about the nature and genesis of the same salt in plants. The present grossly unbalanced state of knowledge is best illustrated by an appeal to mass. The investigations of calcium phosphate in vertebrates far exceed all other studies of calcium salts, yet bone, dentine and enamel are the least abundant mineralized tissues, constituting a fraction of a percent of the calcium oxalate in plants, where the nature of the inorganic substances present seems to have been neglected and where there appear to be no reports of the ultrastructure in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott, H. J.: Studies of calcification in plants. 3rd European Symposium on Calcified Tissues (in press).

    Google Scholar 

  • Arnott, H. J.: G. Bevelander, and F. G. E. Pautard: (in press).

    Google Scholar 

  • Arnott, H. J.:and F. G. E. Pautard: (in press).

    Google Scholar 

  • Arnott, H. J.: and H. Steinfink: Nature (Lond.) (in press).

    Google Scholar 

  • Ascenzi, A., C. François, and D. S. Bocciarelli: On the bone induced by oestrogens in birds. J. Ultrastruct. Res. 8, 491 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Bevelander, G.: Interactions between protein elaboration and calcification in molluscs. Anat. Rec. 117, 568 (1953).

    Google Scholar 

  • Bevelander, G.: and H. Nakahara: Development of the skeleton of the sand dollar (Echinarachnius parma). In Calcification in Biological Systems. Sognnaes, R. F. (ed.). Washington: Amer. Ass. Advanc. Sci. 1960, p. 41.

    Google Scholar 

  • Boyce, W. H., and J. S. King: Present concepts concerning the origin of matrix and stones. Ann. N. Y. Acad. Sci. 104, 563 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Brand, T. von, T. I. Mercado, M. V. Nylen, and D. B. Scott: Observations on function, composition and structure of cestode calcareous corpuscles. Exp. Parasit. 9, 205 (1960).

    Article  CAS  Google Scholar 

  • Cameron, P. A.: The fine structure of osteoblasts in the metaphyses of the tibia of the young rat. J. biophys. biochem. Cytol. 9, 583 (1961).

    Article  CAS  Google Scholar 

  • Clarke, F. W., and W. C. Wheeler: The inorganic constituents of marine invertebrates. U.S. Geol. Survey 124, (1922).

    Google Scholar 

  • Dudley, H. R., and D. Spiro: Fine structure of bone cells. J. biophys. biochem. Cytol. 11, 624 (1961).

    Article  Google Scholar 

  • Eanes, E. C., I. H. Gillessen, and A. S. Posner: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.) (in press).

    Google Scholar 

  • Eastoe, J. G.: Organic matrix of tooth enamel. Nature (Lond.) 184, 411 (1960).

    Article  Google Scholar 

  • Ennever, J.: Microbiologic calcification. Ann. N. Y. Acad. Sci. 109, 4 (1963).

    Article  CAS  Google Scholar 

  • Frank, R. M.: Etude au microscope électronique de Possification en milieu conjonctif. Ann. Histochim. 8, 25 (1963).

    PubMed  CAS  Google Scholar 

  • Frank, R. M.: R. F. Sognnaes, and R. Kern: Calcification of dental tissues with special reference to enamel ultrastructure. In Calcification in Biological Systems. Sognnaes, R. F. (ed.). Washington: Amer. Ass. Advanc. Sci. 1960, p. 162.

    Google Scholar 

  • Frey, A.: Calciumoxalat-Monohydrat und Trihydrat. In Linsbauer’s Handbuch der Pflanzenanatomie. Berlin: Gebrüder Borntraeger 1929, p. 81.

    Google Scholar 

  • Gonzales, F., and R. F. Sognnaes: Electron microscopy of dental calculus. Science 131, 156 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Greenawalt, T. W., C. S. Rossi, and A. L. Lehninger: Effect of active accumulation of calcium and phosphate on the structure of the rat liver mitochondria. J. Cell Biol. 23, 21 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, C.: Topography of the organic components in mother of pearl. J. biophvs. biochem. Cytol. 3, 797 (1957).

    Article  CAS  Google Scholar 

  • Hancox, N. M., and B. Boothroyd: Ultrastructure of bone formation and resorption. In Modern Trends in Orthopaedics. Clark, J. M. P. (ed.). London: Butterworths 1964, p. 26.

    Google Scholar 

  • Hartles, R. L.: Calcification. In Modern Trends in Orthopaedics. Clark, J. M. P. (ed.). London: Butterworths 1964, p. 53.

    Google Scholar 

  • Honegger, R.: The polyhydrates of calcium oxalate. Vjschr. Naturforsch. Ges. 97 (1952).

    Google Scholar 

  • Jodrey, L. H.: Studies on shell formation. III. Measurement of calcium deposition in shell and calcium turnover in mantle tissue using the mantle-shell preparation and Ca45. Biol. Bull. 104, 398 (1953).

    Article  CAS  Google Scholar 

  • Johnson, F. A., and K. Pani: Histochemical identification of calcium oxalate. Arch. Path. 74, 347 (1962).

    CAS  Google Scholar 

  • Kelly, P. G., P. T. P. Oliver, and F. G. E. Pautard: The shell of Lingula unguis. In Calcified Tissues. Richelle, L. J., and M. J. Dallemagne (eds.). Liège: Université de Liège 1965, p. 334.

    Google Scholar 

  • Klement, R. von: Die anorganische Skelettsubstanz, ihre Zusammensetzung, natürliche und künstliche Bildung. Naturwissenschaften 26, 145 (1938).

    Article  CAS  Google Scholar 

  • Moscona, A.: Utilization of mineral constituents of the egg shell by the developing embryo of the stick insect. Nature (Lond.) 162, 62 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Neuman, W. F., and M. W. Neuman: The nature of the mineral phase of bone. Chem. Rev. 53, 1 (1953).

    Article  CAS  Google Scholar 

  • Nishihara, H.: Calcium oxalate content of fish scales. Sci. Rep. Saitama Univ. Sec. B 1, 1939 (1954).

    Google Scholar 

  • Pautard, F. G. E.: Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochim. biophys. Acta 35, 32 (1959).

    Article  Google Scholar 

  • Pautard, F. G. E.: An X-ray diffraction pattern from human enamel. Arch. oral Biol. 3, 217 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Pautard, F. G. E.: Mineralization of keratin and its comparison with the enamel matrix. Nature (Lond.) 199, 531 (1963).

    Article  CAS  Google Scholar 

  • Pautard, F. G. E.: The molecular organization of bone. In Modern Trends in Orthopaedics. Clark, J. M. P. (ed.). London: Butterworths 1964, p. 1.

    Google Scholar 

  • Pautard, F. G. E.: Calcification of baleen. In Calcified Tissues. Richelle, L. J., and M. J. Dallemagne(eds.). Liège: Université de Liège 1965, p. 347.

    Google Scholar 

  • Pautard, F. G. E.: and O. R. Trautz: (in press).

    Google Scholar 

  • Pobeguin, T.: Les oxalates de calcium chez quelques Angiospermes. Etude physico-chimique. Ann. Sci. nat. Bot. 11/4, 1 (1943).

    Google Scholar 

  • Pobeguin, T.:Contribution à l’étude des carbonates de calcium. Ann. Sci. nat. Bot. 15, 29 (1954).

    CAS  Google Scholar 

  • Rao, K. P., and E. D. Goldberg: Utilization of dissolved calcium by a pelecypod. J. cell. comp. Physiol. 43, 283 (1954).

    Article  CAS  Google Scholar 

  • Reimann, B. E. F., J. C. Lewin, and B. E. Volcani: Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis. J. Cell Biol. 24, 39 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Robinson, L. A., and D. A. Cameron: Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant. J. biophys. biochem. Cytol. 2, 253 (1956).

    Article  PubMed  Google Scholar 

  • Robison, R.: The Significance of Phosphoric Esters in Metabolism. New York: University Press 1932.

    Google Scholar 

  • Rönnholm, E.: The structure of the organic stroma of human enamel during amelogenesis. J. Ultrastruct. Res. 3, 368 (1963).

    Google Scholar 

  • Sabatini, D. D., F. Miller, and R. S. Barnett: Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J. Histochem. Cytochem. 12, 57 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Scott, F. M.: Distribution of calcium oxalate crystals in Ricinus communis in relation to tissue differentiation and presence of other ergastic substances. Bot. Gazette 103, 225 (1941).

    Article  CAS  Google Scholar 

  • Sheldon, H., and R. A. Robinson: Electron microscope studies of crystal-collagen relationship in bone. J. biophys. biochem. Cytol. 3, 1011 (1957).

    Article  CAS  Google Scholar 

  • Travis, D. F.: Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann. N. Y. Acad. Sci. 109, 177 (1963).

    Article  PubMed  CAS  Google Scholar 

  • M. J. Glimcher: The structure and organization and relationship between the organic matrix and the inorganic apices of embryonic bovine enamel. J. Cell Biol. 23, 447 (1964).

    Article  PubMed  Google Scholar 

  • Urist, M. R.: Recent advances in physiology of calcification. J. bone Jt Surg. 46, 889 (1964).

    CAS  Google Scholar 

  • Walter-Levy, L., et R. Strauss: Sur la repartition des hydrates de l’oxalate de calcium chez les végétaux. C. R. Acad. Sci. 254, 1671 (1962).

    CAS  Google Scholar 

  • Whitehead, R. G., and S. M. Weidmann: The effect of parathormone on the uptake of 32P into adenosine triphosphate and bone salt of kittens. Biochem. J. 71, 312 (1959).

    PubMed  CAS  Google Scholar 

  • Wilbur, K. M.: Shell formation and regeneration. In Physiology of Mollusca. Wilbur, K. M., and L. M. Yonge(eds.). New York: Academic Press 1964, p. 343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pautard, F.G.E. (1966). A Biomolecular Survey of Calcification. In: Fleisch, H., Blackwood, H.J.J., Owen, M. (eds) Calcified Tissues 1965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49802-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49802-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49514-4

  • Online ISBN: 978-3-642-49802-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics