Skip to main content

Electro-mechanical Factors Regulating Bone Architecture

  • Chapter
Calcified Tissues 1965

Abstract

Bone has been defined as a hard substance, a mineralized connective tissue, the structural material upon which muscles and ligaments are hung. From early child hood, when man becomes conscious of the meaning of a skeleton, he is aware of the permanence of bone. The surgeon saws it, drills it, screws it, nails it and otherwise treats it very much as he would a piece of oak or pine in his workshop. In fact, its desirable physical properties, such as hardness, elasticity and durability, have prompted men to employ bone in the construction of many diverse items. It has been used in the hunt, as arrowheads and corset stays, and in the pleasures of the parlor, as dice and toothpicks. Truly, bone is a most remarkable substance! Its enduring behavior as an inanimate material, however, is not matched by its conduct in the animate state, for living bone is changing bone.

Supported in part by grants from the U.S. Public Health Service, TI AM 5408, and AM 07822, and the Easter Seal Research Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andry, N.: L’Orthopédie. Paris: Lambert et Durant 1741.

    Google Scholar 

  • Bassett, C. A. L.: Environmental and cellular factors regulating osteogenesis. In Bone Biodynamics. Frost, H. (ed.). Boston: Little, Brown 1964, p. 233.

    Google Scholar 

  • Bassett, C. A. L.: In minimum ecological systems for man. Trans. N. Y. Acad. Sci. (in press).

    Google Scholar 

  • Bassett, C. A. L., and R. O. Becker: Generation of electric potentials by bone in response to mechanical stress. Science 137, 1063 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C. A. L., and R. O. Becker., D. K.Creighton, and F. E. Stinchfiel. : Contributions of endosteum, cortex, and soft tissues to osteogenesis. Surg. Gynec. Obstet. 112, 145 (1961).

    PubMed  CAS  Google Scholar 

  • Bassett, C. A. L., R. J. Pawluk, and R. O.Becker. Effects of electric currents on bone in vivo. Nature (Lond.) 204, 652 (1964).

    Article  CAS  Google Scholar 

  • Becker, R. O., and F. M. Brown. Photoelectric effects in human bone. Nature (Lond.) 206, 1325 (1965).

    Article  CAS  Google Scholar 

  • Becker, R. O., C. A. L. Bassett, and C. H. Bachman. Bioelectric factors controlling bone structure. In Bone Biodynamics. Frost, H. (ed.). Boston: Little, Brown 1964, p. 209.

    Google Scholar 

  • Boddy, P. J., and W. H. Brattain. Effect of cupric ion on electrical properties of the germanium-aqueous electrolyte interface. J. electrochem. Soc. 109, 812 (1962).

    Article  CAS  Google Scholar 

  • Christiansen, J. A., C. Eensen, and Th. Vilstru. : Displacement potentials and bending of rod-like polyelectrolytes. Nature (Lond.) 191, 484 (1961).

    Article  CAS  Google Scholar 

  • Cochran, G. V. B., R. J. Pawluk, and C. A. L. Bassett. Unpublished.

    Google Scholar 

  • Currey, J. D.: Three analogies to explain the mechanical properties of bone. Biorheol. 2, 1 (1964).

    Google Scholar 

  • Fukada, E., and I. Yasuda: On the piezo-electric effect of bone. J. phys. Soc. Japan 12, 1158 (1957).

    Article  Google Scholar 

  • Fukada, E., and I. Yasuda, and R. Goto. The piezo-electric effect in collagen. Reports on Progress in Polymer Physics in Japan, 2, 101 (1959).

    Google Scholar 

  • Gebhardt, F.: Ãœber funktionell wichtige Anordnungsweise der gröberen und feineren Bauelemente des Wirbeltierknochens. Arch. Entwickl.-Mech. Org. 20, 1901 (1905).

    Google Scholar 

  • Geiser, M., and J. Trueta. Muscle action, bone rarefaction and bone formation: An experimental study. J. Bone Jt Surg. 40 B, 282 (1958) .

    Google Scholar 

  • Huber, F.: Piezo-effect in P-N junctions of semi-conducting titanium oxide film. Appl. Phys. Letters 2, 76 (1963).

    Article  CAS  Google Scholar 

  • Jansen, M.: On Bone Formation, Its Relation to Tension and Pressure. London: Longmans, Green 1920.

    Google Scholar 

  • Johnson, L. C.: Morphologic analysis in pathology: The kinetics of diseases and general biology of bone. In Bone Biodynamics. Frost, H. (ed.). Boston: Little, Brown 1964, p. 543.

    Google Scholar 

  • Little, W. A.: Possibility of synthesizing an organic superconductor. Phys. Rev. 134 A, 1416 (1964).

    Article  Google Scholar 

  • McLean, F. C.: The ultrastructure and function of bone. Science 127, 451 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mason, W. P.: Piezo-electric Crystals and Their Application to Ultrasound. New York: D. Van Nostrand 1950.

    Google Scholar 

  • Murray, P.D. F.: Bones. New York: Cambridge University Press 1936.

    Google Scholar 

  • Porter, K. R.: Cell fine structure and biosynthesis of intercellular macromolecules. In Connective Tissue: Intercellular Macromolecules. Boston: Little, Brown 1964, p. 167.

    Google Scholar 

  • Rüedi, T., and C. A. L. Bassett. Unpublished.

    Google Scholar 

  • Sawyer, P. N., and J. W. Pate. Bioelectric phenomena as an etiologic factor in intra- vascular thrombosis. Amer. J. Phys. 175, 103 (1953).

    CAS  Google Scholar 

  • Shamos, M. H., and L. S. Lavine: Physiological basis for bioelectric effects in mineralized tissues. Clin. Orthop. 35, 177 (1964).

    PubMed  CAS  Google Scholar 

  • Shamos, M. H., and L. S. Lavine and M. I. Shamos. Piezo-electric effect in bone. Nature (Lond.) 197, 81 (1963).

    Article  CAS  Google Scholar 

  • Smith, J. W., and R. Walmsley. Factors affecting the elasticity of bone. J. Anat. 96, 503 (1959).

    Google Scholar 

  • Thompson, D’Arc. W.: On Growth and Form. Cambridge: University Press 1963.

    Google Scholar 

  • Tischendorf, F.: Das Verhalten der Haversschen Systeme bei Belastung. Arch. Entwickl.- Mech. Org. 145, 318 (1951).

    Article  Google Scholar 

  • Weiss, P.: Molecular reorientation as unifying principle underlying cellular reactivity. Proc. nat. Acad. Sci. 46, 993 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J.: Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald 1892.

    Google Scholar 

  • Wunder, C. C., S. R. Briney, M. Kral, and C. Skaugsta. : Growth of mouse femurs during continual centrifugation. Nature (Lond.) 188, 151 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bassett, C.A.L. (1966). Electro-mechanical Factors Regulating Bone Architecture. In: Fleisch, H., Blackwood, H.J.J., Owen, M. (eds) Calcified Tissues 1965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49802-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49802-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49514-4

  • Online ISBN: 978-3-642-49802-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics