Skip to main content
  • 93 Accesses

Abstract

The nucleic acids perform important biological functions. As disclosed by the pioneer experiments of Cassperson and Brachet, RNA1 is concerned with cell growth through its participation in the biosynthsis of proteins. DNA, on the other hand, is concerned with the transmission of hereditary characters. It is now known that the individual genes control the synthesis of individual enzymes and other proteins and there are good grounds for the belief that genes are but stretches of a DNA chain with a specific nucleotide sequence. The nucleotides in DNA represent, therefore, the letters of an alphabet used by nature in the transmission of genetic information. It is of interest -that in certain viruses which consist of RNA and protein, such as tobacco mosaic, influenza, or poliomyelitis virus, RNA is the carrier of genetic information. The distribution of DNA and RNA in the cell reflects their biological function. DNA is exclusively located in the nuclear chromosomes while RNA is mainly localized in the cytoplasm. There are two kinds of cytoplasmic RNA, one of small size (molecular weight 20,000 to 50,000) is present in the cytoplasmic supernatant obtained by high speed centrifugation and is referred to as soluble RNA; the other is of much larger size (molecular weight 1 to 2 × 106) and is a component of the ribonucleoprotein particles or ribosomes. Both play an essential role in protein biosynthesis. Small amounts of RNA are also found in the nucleus, predominantly in the nucleolus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The following abbreviations are used: adenosine, guanosine, uridine, cytidine and inosine are represented by A, G, U, C and I, respectively; 5′-monophosphates of these nucleosides by AMP, GMP, UMP, CMP and IMP; the corresponding 5′-diphosphates by ADP, GDP, UDP, CDP and IDP; the 5′triphosphates by ATP, GTP, etc. Synthetic polyribonucleotides are abbreviated thus: polyadenylic acid, poly A; polyguanylic acid, poly G; polyuridylic acid, poly U; polycytidylic acid, poly C; polyinosinic acid, poly I; polyribothymidylic acid, polyribo T; polythiouridylic acid, polythio U; polyfluorouridylic acid, polyfluoro U; copolymer of adenylic and uridylic acids, poly AU; copolymer of guanylic and cytidylic acids; poly GC; copolymer of adenylic, guanylic, uridylic and cytidylic acids (synthetic RNA), poly AGUC; copolymer of adenylic, guanylic, uridylic, cytidylic and thiouridylic acids, poly AGUC thio U. Other abbreviations are: ribonucleic acid, RNA; deoxyribonucleic acid, DNA; orthophosphate, P; pyrophosphate, PP. Small polynucleotides (oligonucleotides) are designated by the following system: a phosphate residue is designated by p; when placed to the left of a nucleoside symbol, the phosphate is esterified at C-5′ of the ribose moiety; when placed to the right of the nucleoside symbol, the phosphate is esterified to C-3′ of the ribose moiety. Thus pApA is a dinucleotide with one phosphate monoesterified at C-5′ of an adenosine residue and a phos-phodiester bond between C-3′ of the same adenosine residue and C-5′ of the other adenosine group.

    Google Scholar 

  2. Kornberg, A.: Angew. Chem. 72, 231 (1960).

    Article  Google Scholar 

  3. Ochoa, S.: Angew. Chem. 72, 225 (1960).

    Article  Google Scholar 

  4. Hecht, L. I., P. C. Zamecnik, M. L. Stephenson and J. F. Scott: J. Biol. Chem. 233, 954 (1958).

    PubMed  CAS  Google Scholar 

  5. Grunberg-Manago, M., and S. Ochoa: J. Am. Chem. Soc. 77, 3165 (1955).

    Article  CAS  Google Scholar 

  6. Grunberg-Manago, M., P. J. Ortiz and S. Ochoa: Science 122, 907 (1955).

    Article  PubMed  CAS  Google Scholar 

  7. Grunberg-Manago, M., P. J. Ortiz and S. Ochoa: Biochim. et. Biophys. Acta: 20, 269 (1956).

    Article  CAS  Google Scholar 

  8. Lengyel, P., and R. W. Chambers: J. Am. Chem. Soc. 82, 752 (1960);

    Article  CAS  Google Scholar 

  9. Lengyel, P., and R. W. Chambers: Federation Proc. 19, 315 (1960).

    Google Scholar 

  10. Lengyel, P.: Unpublished observations.

    Google Scholar 

  11. Škoda, J., J. Kára, A. Šormova and F. Šorm: Biochim. et Biophys. Acta 33, 579 (1959);

    Article  Google Scholar 

  12. Škoda, J., J. Kára and Z. Šormova: Coll. Czechoslov. Chem. Commun. 24, 3783 (1959.)

    Google Scholar 

  13. Ochoa, S., and L. A. Heppel: In W. D. McElroy and B. Glass: The Chemical Basis of Heredity, p. 615. Baltimore, Maryland: Johns Hopkins Press 1957.

    Google Scholar 

  14. Ochoa, S.: XL Conseil de Chimie Solvay, Brussels, June 1959.

    Google Scholar 

  15. Mu, S., and R. C. Warner: Federation Proc. 19, 317 (1960).

    Google Scholar 

  16. Griffin, B. A., A. Todd and A. Rich: Proc. Nat. Acad. Sci., U: S. A., 44, 1123 (1958).

    Article  CAS  Google Scholar 

  17. Ochoa, S.: Arch. Biochem. Biophys. 69, 119 (1957).

    Article  PubMed  CAS  Google Scholar 

  18. Rich, A., and D. R. Davies: J. Am. Chem. Soc. 78, 3548 (1956).

    Article  CAS  Google Scholar 

  19. Lengyel, P., and S. Ochoa: Biochim. et Biophys. Acta 28, 200 (1958).

    Article  CAS  Google Scholar 

  20. Ochoa, S., S. Mii and M. C. Schneider: Proceedings Internatl. Symposium on Enzyme Chemistry, p. 44. Tokyo, Japan: Marzen Co. 1957.

    Google Scholar 

  21. Ochoa, S., and S. Mn: Unpublished observations.

    Google Scholar 

  22. Mii, S., and S. Ochoa: Biochim. et Biophys. Acta 26, 445 (1957).

    Article  CAS  Google Scholar 

  23. Heppel, L. A., P. J. Ortiz and S. Ochoa: Science 123, 415 (1956).

    Article  PubMed  CAS  Google Scholar 

  24. Singer, M.F., L.A. Heppel and R. J. Hilmoe: Biochim. et Biophys. Acta 26, 447 (1957).

    Article  CAS  Google Scholar 

  25. Singer, M. F., L. A. Heppel and R. J. Hilmoe: J. Biol. Chem. 235, 738 (1960).

    PubMed  CAS  Google Scholar 

  26. Singer, M. F., R. J. Hilmoe and L. A. Heppel: J. Biol. Chem. 235, 751 (1960).

    PubMed  CAS  Google Scholar 

  27. Singer, M. F., L. A. Heppel, R. J. Hilmoe, S. Ochoa and S. Mii: Proceedings 3rd Canad. Cancer Conference, p. 41. New York: Academic Press 1959.

    Google Scholar 

  28. Singer, M. F.: J. Biol. Chem. 232, 211 (1958).

    PubMed  CAS  Google Scholar 

  29. Brummond, D. O., M. Staehelin and S. Ochoa: J. Biol. Chem. 225, 835 (1957).

    PubMed  CAS  Google Scholar 

  30. Littauer, U. Z., and A. Kornberg: J. Biol. Chem. 226, 1077 (1957).

    PubMed  CAS  Google Scholar 

  31. Beers, R. F., jr.: Nature (London) 177, 790 (1956).

    Article  CAS  Google Scholar 

  32. Hilmoe, R. J., and L. A. Heppel: J. Am. Chem. Soc. 79, 4810 (1957).

    Article  CAS  Google Scholar 

  33. Heppel, L. A., P. J. Ortiz and S. Ochoa: J. Biol. Chem. 229, 679 (1957).

    PubMed  CAS  Google Scholar 

  34. Heppel, L. A., P. J. Ortiz and S. Ochoa: J. Biol. Chem. 229, 695 (1957).

    PubMed  CAS  Google Scholar 

  35. Ortiz, P. J., and S. Ochoa: J. Biol. Chem. 234, 1208 (1959).

    PubMed  CAS  Google Scholar 

  36. Rich, A.: In W. D. McElroy and B. Glass: The Chemical Basis of Heredity, p. 557. Baltimore, Maryland: Johns Hopkins Press 1957.

    Google Scholar 

  37. Hart, R. G., and J. D. Smith: Nature (London) 178, 739 (1956).

    Article  CAS  Google Scholar 

  38. Warner, R. C.: J. Biol. Chem. 229, 711 (1957).

    PubMed  CAS  Google Scholar 

  39. Warner, R. C., and E. Breslow: Symposia of 4th Internatl. Congress of Biochemistry, Vienna, p. 157. London: vol. 9.: Pergamon Press 1958.

    Google Scholar 

  40. Felsenfeld, G., and A. Rich: Biochim. et Biophys. Acta 26, 459 (1957).

    Article  Google Scholar 

  41. Rich, A.: Nature (London) 181, 521 (1958).

    Article  CAS  Google Scholar 

  42. Fresco, J. R., and P. Doty: J. Am. Chem. Soc. 79, 3928 (1957).

    Article  CAS  Google Scholar 

  43. Rich, A.: Biochim. et Biophys. Acta 29, 502 (1958).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ochoa, S. (1961). Enzymatic Synthesis of Ribonucleic Acid. In: Aisenberg, A.C., et al. Radioactive Isotopes in Physiology Diagnostics and Therapy / Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49761-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49761-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49477-2

  • Online ISBN: 978-3-642-49761-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics