Skip to main content

Stationary Gaussian Processes Satisfying the Strong Mixing Condition and Best Predictable Functionals

  • Chapter
Bernoulli 1713, Bayes 1763, Laplace 1813
  • 75 Accesses

Abstract

The well-known problem of least squares prediction of the stationary stochastic process x (t) is the problem of finding the functional \(\widetilde{x}(\tau )\) of the values x (t), t ≦ 0, which is the least squares approximation of the “future” value of the process x (τ), τ > 0. In addition to the functional \(\widetilde{x}(\tau )\) it is important to know the mean square error of the prediction

$${{\sigma }^{2}}(\tau )=E|x(\tau )-\widetilde{x}(\tau ){{|}^{2}},$$
(1)

or, what is equivalent, the correlation coefficient

$$\rho (\tau )=\frac{Ex(\tau )\widetilde{x}(\tau )}{{{\{E{{[x(\tau )]}^{2}}E{{[\widetilde{x}(\tau )]}^{2}}\}}^{\frac{1}{2}}}}=\sqrt{1-\frac{{{\sigma }^{2}}(\tau )}{E{{[x(\tau )]}^{2}}}}$$
(2)

between x (τ) and \(\widetilde{x}(\tau )\) [here and later we can consider without loss of generality only the processes x (t) with Ex (t) = 0]. If the process x (t) is Gaussian, the least squares approximation \(\widetilde{x}(\tau )\) is linear; therefore, we can say that the problem of linear least squares prediction of the stationary process x (t) is the wide sense version of the general problem of least squares prediction (see Doob [1], Chapter II Section 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doos, J. L.: Stochastic Processes. New York: Wiley 1953.

    Google Scholar 

  2. Kolmogorov, A. N.: Interpolation und Extrapolation von stationären zufälligen Folgen. Izv. Akad. Nauk SSSR. Ser. Mat. 5, 3 (1941).

    MathSciNet  Google Scholar 

  3. Krein, M. G.: On a problem of extrapolation of A. N. KOLMOGOROFF. Dokl. A.ad. Nauk SSSR 46, 306 (1945).

    MathSciNet  MATH  Google Scholar 

  4. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York: Wiley 1949.

    MATH  Google Scholar 

  5. Yaglom, A. M.: An Introduction to the Theory of Stationary Random Functions. New York: Prentice-Hall 1962.

    MATH  Google Scholar 

  6. Rosenblatt, M.: A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA. 42, 43 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolmogorov, A. N., and Yu. A. Rozanov: On a strong mixing condition for a stationary random Gaussian process. Teor. Veroyatnost. i Primenen. 5, 222 (1960).

    MathSciNet  MATH  Google Scholar 

  8. Ibragimov, I. A.: Spectral functions of certain classes of Gaussian stationary processes. Dokl. Akad. Nauk SSSR. 137, 1046 (1961).

    MathSciNet  Google Scholar 

  9. Ibragimov, I. A.: Stationary Gaussian sequences that satisfy the strong mixing condition. Dokl. Akad. Nauk SSSR. 147, 1282 (1962).

    MathSciNet  Google Scholar 

  10. Rosenblatt, M.: Independence and dependence. Proc. Fourth Berkeley Symp. on Math. Stat. and Prob. II, 431–443. Berkeley and Los Angeles: University of California Press 1961.

    Google Scholar 

  11. Helson, H., and G. SzegÖ: A problem in prediction theory. Ann. Matem. Pura ed Appl. 51, 107 (1960).

    Article  MATH  Google Scholar 

  12. Hotelling, H.: Relation between two sets of variates. Biometrica. 28, 321 (1936).

    MATH  Google Scholar 

  13. Obouxxov, A. M.: Normal correlation of vectors. Izv. Akad. Nauk SSSR. Ser. Mat. 3, 339 (1938).

    Google Scholar 

  14. Obouxxov, A. M.: Theory of correlation of vectors. Uchen. Zap. M.sk. Gosud. Univ., Matem. 45, 73 (1940).

    Google Scholar 

  15. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. New York: Wiley 1959.

    Google Scholar 

  16. Gelfand, I. M., and A. M. Yaglom: Calculation of the amount of information about a random function contained in another such function. Uspehi Mat. Nauk. 12, No. 1 (73), 3 (1957).

    MathSciNet  Google Scholar 

  17. Hannan, E. J.: The general theory of canonical correlation and its relation to functional analysis. J. Austral. Math. Soc. 2, 229 (1961).

    MathSciNet  MATH  Google Scholar 

  18. Shirokov, P. A.: Tensor Calculus. Moskva-Leningrad 1934.

    Google Scholar 

  19. Doob, J. L.: The elementary Gaussian processes. Ann. Math. Statist. 15 229 (1944).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Neyman Lucien M. Le Cam

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yaglom, A.M. (1965). Stationary Gaussian Processes Satisfying the Strong Mixing Condition and Best Predictable Functionals. In: Neyman, J., Le Cam, L.M. (eds) Bernoulli 1713, Bayes 1763, Laplace 1813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49749-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49749-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49466-6

  • Online ISBN: 978-3-642-49749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics