Skip to main content

Phenomenological rheology of thixotropic liquids: a contribution to the needs of engineering science

  • Conference paper

Abstract

The paper presents results obtained in developing procedures for the design of technological equipment in which the flow of thixotropic fluids takes place. Some general guidelines for the selection and identification of rheological models suitable for engineering purposes are given. A rheological model of thixotropy is presented, featuring yield stress and consistency consisting of a constant and a time-dependent part. The model is used for calculating the friction factor in steady-state pipe flow and for the description of the nonsteadystate clearing of gelled crude oil pipelines. In comparing the results of the present theoretical approach with experimental data obtained on a full scale pipeline, good agreement has been found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

parameter of the rheological model, eq. (1) [s−1]

b:

parameter of the rheological model, eq. (1) [sm − 1]

D = 2R:

pipe inner diameter [m]

De:

Deborah number, eq. (10) [−]

F:

dimensionless criterion, eq. (3) [−]

k:

consistency [Pa sn]

∆k:

parameter of the rheological model, eq. (1) [Pa sn]

L:

pipe length [m]

m:

parameter of the rheological model, eq. (1) [−]

n:

flow index [−]

N:

rotational speed [s−1]

∆p:

pressure difference, pump pressure [Pa]

∆p1, ∆p2 :

pressure differences in the incoming oil and outgoing gel [Pa]

R1, R2 :

bob and cup radii [m]

Re:

generalized Reynolds number, eq. (7) [−]

S = R1/R2 :

ratio of bob and cup radii [−]

SN:

structural number, eq. (8) [−]

t:

time [s]

ū:

volumetric mean velocity [m]

\(\dot V \) :

flow rate [m3 s−1]

z:

axial coordinate [m]

\(\dot \gamma\) :

shear rate [s−1]

\({\dot Y_w} \) :

shear rate at the wall [s−1]

\({\dot Y_b} \) :

Shear rate at the bob surface [s−1]

λ:

Structural parameter [−]

λe :

equilibrium value of λ, eq. (9) [−]

λf :

friction factor, eq. (6) [−]

τ:

shear stress [Pa]

τw :

shear stress at the wall [Pa]

τy0, τy1 :

yield stress [Pa]

Ω:

angular speed [rad s−1]

References

  1. Scott-Blair GW (1969) Elementary Rheology, Academic Press, London, New York, p 33

    Google Scholar 

  2. British Standard BS 5168: 1975 (1975) Glossary of rheological terms, British Standards Institution, London, p 16

    Google Scholar 

  3. Skelland AHP (1967) Non-Newtonian Flow and Heat Transfer, Wiley, New York

    Google Scholar 

  4. Sesták J, Zitnÿ R, Houska M (1983) J Food Engng 2: 35

    Article  Google Scholar 

  5. Bird RB, Armstrong RC, Hassager O (1979) Dynamics of Polymeric Fluids, Vol. 1, Wiley, New York

    Google Scholar 

  6. Friedrich CH, Seeger R, Schnabel R, Reher EO (1981) Plaste und Kautschuk 28: 460

    Google Scholar 

  7. Kemblowski Z, Petera J (1981) Rheol Acta 20: 311

    Article  MATH  Google Scholar 

  8. Parker BR (1975) PhD Thesis, University of Bradford

    Google Scholar 

  9. Zitnÿ R (1976) PhD Thesis, Faculty of Mechanical Engineering, CVUT, Prague

    Google Scholar 

  10. Houska M (1981) PhD Thesis, Faculty of Mechanical Engineering, CVUT Prague

    Google Scholar 

  11. Mewis J (1979) J Non-Newtonian Fluid Mech 6: 1

    Article  MATH  Google Scholar 

  12. Cheng DCH, Evans F (1965) Brit J Appl Phys 16: 1599

    Article  ADS  Google Scholar 

  13. Moore F (1959) Trans Brit Ceram Soc 58: 470

    Google Scholar 

  14. Carleton AJ, Cheng DCH, Whittaker W (1974) Technical paper IP-74–009 Institute of Petroleum, London

    Google Scholar 

  15. Cheng DCH (1979) Technical paper LR 317 (MH) Warren Spring Laboratory Stevenage

    Google Scholar 

  16. Sesták J, Houska M, Zitnÿ R (1982) J Rheology 26: 459

    Article  ADS  Google Scholar 

  17. Houska M, Zitnÿ R, Sesták J (1981) Rheologische Zustandsgleichung thixotroper Flüssigkeiten zur Berechnung technologischer Grundverfahren, II. Kolloquium Rheologie_und Textur der Lebensmittel, Dresden

    Google Scholar 

  18. Sesták J, Zitnji R, Houska M (1983) Flow of thixotropic fluids in pipelines, 30th CHISA Conference, Strbské Pleso (CSSR)

    Google Scholar 

  19. Sesták J, Charles ME, Cawkwell MG, Houska M (1987) J of Pipelines (In press)

    Google Scholar 

  20. Cheng DCH (1985) A time-dependent property and how to measure it, Warren Spring Laboratory Report LR 540, Stevenage

    Google Scholar 

  21. Rao MBA, Mahajan SP, Khilar KC (1985) Canad J Chem Engng 63: 170

    Article  Google Scholar 

  22. Sesták J, Zitnÿ R, Houska M (1984) Solution of engineering problems associated with flow of thixotropic fluids, 8th Int Congr CHISA Prague

    Google Scholar 

  23. Sesták J, Zitnÿ R (1985) Research Report No 218–3/85 Faculty of Mechanical Engineering CVUT, Prague

    Google Scholar 

  24. Smith PB, Ramsden RMJ (1978) The prediction of oil gelation in submarine pipelines and the pressure required for restarting flow. European Offshore Petroleum Conference and Exhibition, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šesták, J. (1988). Phenomenological rheology of thixotropic liquids: a contribution to the needs of engineering science. In: Giesekus, H., Hibberd, M.F. (eds) Progress and Trends in Rheology II. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-49337-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49337-9_5

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-49339-3

  • Online ISBN: 978-3-642-49337-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics