Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 95 / 1))

  • 144 Accesses

Abstract

Interleukin-3 (IL-3) is one of a large and growing group of growth factors which support the proliferation and differentiation of hematopoietic progenitors as well as cells committed to various myeloid lineages. The term IL-3 was initially introduced to identify a T-cell-derived lymphokine which was capable of inducing the expression of the enzyme 20α-hydroxysteroid dehydrogenase (20αSDH) in cultures of nude mouse splenic lymphocytes (Ihle et al. 1981, 1982a). This assay was developed to identify T-cell factors which might support the proliferation and differentiation of early hematopoietic progenitors capable of committing to T-lineage differentiation (Ihle and Weinstein 1986). With the purification of IL-3 to homogeneity it became evident this lymphokine had a broad spectrum of activities on hematopoietic cells and was equivalent to other biological activities which had been characterized including mast cell growth factor activity, P-cell stimulating factor activity, burst promoting activity, multi-colony stimulating factor, thy-1 inducing factor, and WEHI-3 growth factor as well as a number of other activities for which the factors had been less characterized (Ihle et al. 1983; Ihle and Weinstein 1986; Ihle 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt FW, Blackwell TK, DePinho RA, Reth MG, Yancopoulos GD (1986) Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89: 5–30

    Article  PubMed  CAS  Google Scholar 

  • Azoulay M, Webb CG, Sachs L (1987) Control of hematopoietic cell growth regulators during mouse fetal development. Mol Cell Biol 7: 3361–3364

    PubMed  CAS  Google Scholar 

  • Bagby GC (1987) Production of multilineage growth factors by hematopoietic stromal cells: an intercellular regulatory network involving mononuclear phagocytes and interleukin-1. Blood Cells 13: 147–159

    PubMed  CAS  Google Scholar 

  • Barlow DP, Bücan M, Lehrach H, Hogan BL, Gough NM (1987) Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and Multi-CSF (IL3). EMBO J 6: 617–623

    PubMed  CAS  Google Scholar 

  • Barton BE, WoldeMussie E, Wheller L (1988) The role of arachidonic acid metabolism in IL-3-induced proliferation. Immunopharmacol Immunotoxicol 10: 35–52

    Article  PubMed  CAS  Google Scholar 

  • Birchenall-Sparks MC, Farrar WL, Rennick D, Kilian PL, Ruscetti FW (1986) Regulation of expression of the interleukin-2 receptor on hematopoietic cells by interleukin-3. Science 233: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52: 301–354

    Article  PubMed  CAS  Google Scholar 

  • Bordereaux D, Fichelson S, Sola B, Tambourin PE, Gisselbrecht S (1987) Frequent involvement of the fim-3 region in Friend murine leukemia virus-induced mouse myeloblastic leukemias. J Virol 61: 4043–4045

    PubMed  CAS  Google Scholar 

  • Bowlin TL, McKown BJ, Sunkara PS (1986) Ornithine decarboxylase induction and polyamine biosynthesis are required for the growth of interleukin-2- and interleukin-3-dependent cell lines. Cell Immunol 98: 341–350

    Article  PubMed  CAS  Google Scholar 

  • Branch DR, Turc JM, Guilbert LJ (1987) Identification of an erythropoietin-sensitive cell line. Blood 69: 1782–1785

    PubMed  CAS  Google Scholar 

  • Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW (1986) Tumor necrosis factor type a stimulates human endothelial cells to produce granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci USA 83: 7467–7471

    Article  PubMed  CAS  Google Scholar 

  • Bryant RW, She HS, Ng KJ, Siegel MI (1986) Modulation of the 5-lipoxygenase activity of MC-9 mast cells: activation by hydroperoxides. Prostaglandins 32: 615–627

    Article  PubMed  CAS  Google Scholar 

  • Buchberg AM, Begigian HG, Taylor BA, Brownell E, Ihle JN, Nagata S, Jenkins NA, Copeland NG (1988) Localization of Evi-2 to chromosome 11: linkage to other protooncogene and growth factor loci using interspecific backcross mice. Oncogene Res 2: 149–165

    PubMed  CAS  Google Scholar 

  • Burstein SA (1986) Interleukin 3 promotes maturation of murine megakaryocytes in vitro. Blood Cells 11: 469–484

    PubMed  CAS  Google Scholar 

  • Campbell HD, Ymer S, Fung MC, Young IG (1985) Cloning and nucleotide sequence of the murine interleukin-3 gene. Eur J Biochem 150: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Cannistra SA, Vellenga E, Groshek P, Rambaldi A, Griffin JD (1988) Human granulocyte-monocyte colony-stimulating factor and interleukin 3 stimulate monocyte cytotoxicity through a tumor necrosis factor-dependent mechanism. Blood 71: 672–676

    PubMed  CAS  Google Scholar 

  • Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R, Charnay P (1988) A gene encoding a protein with zinc fingers is activated during GO/G1 transition in cultured cells. EMBO J 7: 29–35

    PubMed  CAS  Google Scholar 

  • Chen BD-M, Clark CR (1986) Interleukin 3 (IL 3) regulates the in vitro proliferation of both blood monocytes and peritoneal exudate macrophages: synergism between a macrophage lineage-specific colony-stimulating factor (CSF-1) and IL 3. J Immunol 137: 563–570

    PubMed  CAS  Google Scholar 

  • Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166: 1229–1244

    Article  PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Kent SBH, Schrader JW (1984) Purification to apparent homogeneity of a factor stimulating the growth of multiple lineages of hemopoietic cells. J Biol Chem 259: 7488–7494

    PubMed  CAS  Google Scholar 

  • Clark-Lewis I, Aebersold R, Ziltener H, Schrader JW, Hood LE, Kent SB (1986) Automated chemical synthesis of a protein growth factor for hemopoietic cells, interleukin-3. Science 231: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Hapel AJ, Young IG (1986) Cloning and expression of the rat interleukin-3 gene. Nucleic Acids Res 14: 3641–3658

    Article  PubMed  CAS  Google Scholar 

  • Conscience JF, Verrier B, Martin G (1986) Interleukin-3-dependent expression of the cmyc and c-fos proto-oncogenes in hemopoietic cell lines. EMBO J 5: 317–323

    PubMed  CAS  Google Scholar 

  • Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Cook WD, de St Groth BF, Miller JF, MacDonald HR, Gabathular R (1987) Abelson virus transformation of an interleukin 2-dependent antigen-specific T-cell line. Mol Cell Biol 7: 2631–2635

    PubMed  CAS  Google Scholar 

  • Cory S (1986) Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv Cancer Res 47: 189–234

    Article  PubMed  CAS  Google Scholar 

  • Cory, Bernard O, Bowtell D, Schrader S, Schrader JW (1987) Murine c-myc retroviruses alter the growth requirements of myeloid cell lines. Oncogene Res 1: 61–76

    PubMed  CAS  Google Scholar 

  • Culpepper JA, Lee F (1985) Regulation of IL 3 expression by glucocorticoids in cloned murine T lymphocytes. J Immunol 135: 3191–3197

    PubMed  CAS  Google Scholar 

  • Dean J, Cleveland JL, Rapp UR, Ihle JN (1987) Role of myc in the abrogation of IL3 dependence of myeloid FDP-P1 cells. Oncogene Res 1: 279–296

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LF (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D (1980) Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med 152: 1036–1047

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Evans S, Rennick D, Farrar WL (1986) The multilineage heamopoetic growth factor IL3 and activation of protein kinase C stimulate phosphorylation of common substrates. Blood 68: 906–913

    PubMed  CAS  Google Scholar 

  • Farrar WL, Thomas TP, Anderson WB (1985) Altered cytosol/membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature 315: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Fung MC, Hapel AJ, Ymer S, Cohen DR, Johnson RM, Campbell HD, Young IG (1984) Molecular cloning of cDNA for murine interleukin-3. Nature 307: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Garland JM (1988) Rapid phosphorylation of a specific 33-kDa protein (p33) associated with growth stimulated by murine and rat IL3 in different IL3-dependent cell lines, and its constitutive expression in a malignant independent clone. Leukemia 2: 94–102

    PubMed  CAS  Google Scholar 

  • Goodman JW, Hall EA, Miller KL, Shinpock SG (1985) Interleukin 3 promotes erythroid burst formation in serum-free cultures without detectable erythropoietin. Proc Natl Acad Sci USA 82: 3291–3295

    Article  PubMed  CAS  Google Scholar 

  • Grabstein K, Eisenman J, Mochizuki D, Shanebeck K, Conlon P, Hopp T, March C, Gillis S (1986) Purification to homogeneity of B cell stimulating factor. A molecule that stimulates proliferation of multiple lymphokine-dependent cell lines. J Exp Med 163: 1405–1414

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the cfos proto-oncogene. Nature 311: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Greenberger JS, Gans PJ, Davisson PB, Moloney WC (1979) In vitro induction of continous acute promyelocyte leukemia cell lines by Friend or Abelson murine leukemia viruses. Blood 53: 987–1001

    PubMed  CAS  Google Scholar 

  • Gualtieri RJ, Liang CM, Shadduck RK, Waheed A, Banks J (1987) Identification of the hematopoietic growth factors elaborated by bone marrow stromal cells using antibody neutralization analysis. Exp Hematol 15: 883–889

    PubMed  CAS  Google Scholar 

  • Hamaguchi Y, Kanakura Y, Fujita J. Takeda S, Nakano T, Tarui S, Honjo T, Kitamura Y (1987) Interleukin 4 as an essential factor for in vitro clonal growth of murine connective tissue-type mast cells. J Exp Med 165: 268–273

    Google Scholar 

  • Hapel AJ, Fung MC, Johnson RM, Young IG, Johnson G, Metcalf D (1985) Biologic properties of molecularly cloned and expressed murine interleukin-3. Blood 65: 1453–1459

    PubMed  CAS  Google Scholar 

  • Hara K, Suda T, Suda J, Eguchi M, Ihle JN, Nagata S, Miura Y, Saito M (1988) Bipotential murine hemopoietic cell line (NFS-60) that is responsive to IL-3, GMCSF, G-CSF, and erythropoietin. Exp Hemato116: 256–261

    Google Scholar 

  • Harel-Bellan A, Farrar WL (1987) Modulation of proto-oncogene expression by colony stimulating factors. Biochem Biophys Res Commun 148: 1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Hasthorpe S, Carver JA, Rees D, Campbell ID (1987) Metabolic effects of interleukin 3 on 32D c123 cells analyzed by NMR. J Cell Physiol 133: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Holmes KL, Palaszynski E, Fredrickson TN, Morse HC, Ihle JN (1985) Correlation of cell-surface phenotype with the establishment of interleukin 3-dependent cell lines from wild-mouse murine leukemia virus-induced neoplasms. Proc Natl Acad Sci USA 82: 6687–6691

    Article  PubMed  CAS  Google Scholar 

  • Hume CR, Nocka KH, Sorrentino V, Lee JS, Fleissner E (1988) Constitutive c-myc expression enhances the response of murine mast cells to IL-3, but does not eliminate their requirement for growth factors. Oncogene 2: 223–226

    PubMed  CAS  Google Scholar 

  • Ihle JN (1986) Interleukin-3 regulation of the growth and differentiation of hematopoietic lymphoid stem cells. In: Cruse JM, Lewis RE Jr (eds) The year in immunology. Karger, Basel, pp 106–133

    Google Scholar 

  • Ihle JN, Weinstein Y (1986) Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin 3. Adv Immunol 39: 1–50

    Article  PubMed  CAS  Google Scholar 

  • Ihle JN, Pepersack L, Rebar L (1981) Regulation of T cell differentiation: in vitro induction of 20 a hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immunol 126: 2184–2189

    PubMed  CAS  Google Scholar 

  • Ihle JN, Keller J, Henderson L, Klein F, Palaszynski EW (1982a) Procedures for the purification of interleukin-3 to homogeneity. J Immunol 129: 2431–2436

    PubMed  CAS  Google Scholar 

  • Ihle JN, Keller J, Greenberger S, Henderson L, Yetter RA, Morse HC III (1982b) Phenotypic characteristics of cell lines requiring interleukin-3 for growth. J Immunol 129: 1377–1383

    PubMed  CAS  Google Scholar 

  • Ihle JN, Keller J, Oroszlan S, Henderson L, Copeland T, Fitch F, Prystowsky MB, Goldwasser E, Schrader JW, Palaszynski E, Dy M, Lebel B (1983) Biological properties of homogenous interleukin-3 I Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P-cell stimulating factor activity, colony stimulating factor activity and histamine producing cell stimulating factor activity. J Immunol 131: 282–287

    PubMed  CAS  Google Scholar 

  • Ihle JN, Rein A, Mural R (1984) Immunological and virological mechanisms in retrovirus induced murine leukemogenesis. In: Klein G (ed) Advances in viral oncology, vol 4. Raven, New York, pp 95–137

    Google Scholar 

  • Ihle JN, Silver J, Kozak CA (1987) Genetic mapping of the mouse interleukin 3 gene to chromosome 11. J Immunol 138: 3051–3054

    PubMed  CAS  Google Scholar 

  • Ikebuchi K, Wong GG, Clark SC, Ihle JN, Hirai Y, Ogawa M (1987) Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 84: 9035–9039

    Article  PubMed  CAS  Google Scholar 

  • Isfort R, Huhn RD, Frackelton AR Jr, Ihle JN (1988) Stimulation of factor-dependent myeloid cell lines with IL-3 induces tyrosine phosphorylation of several cellular substrates. J Biol Chem 263: 19203–19209

    PubMed  CAS  Google Scholar 

  • Isfort RJ, Abraham R, May WS, Stevens DA, Frackelton AR Jr, Ihle JN (1988a) Mechanisms in interleukin-3 dependent growth of factor dependent myeloid leukemia cell lines. In: Ross R, Burgess T, Hunter T (eds) Growth factors and their receptors: genetic control and rational application. Liss, New York (in press)

    Google Scholar 

  • Isfort RJ, Stevens D, May WS, Ihle JN (1988b) IL-3 binding to a 140 kd phosphotyrosine containing cell surface protein. Proc Natl Acad Sci USA 85: 7982–7986

    Article  PubMed  CAS  Google Scholar 

  • Joyner A, Keller G, Phillips RA, Bernstein A (1983) Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature 305: 556–558

    Article  PubMed  CAS  Google Scholar 

  • Kalland T (1987) Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3. J Immunol 139: 3671–3675

    PubMed  CAS  Google Scholar 

  • Keller G, Paige G, Gilboa E, Wagner EF (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Kelly K, Cochran B, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35: 603–610

    Article  PubMed  CAS  Google Scholar 

  • Kelso A, Owens T (1988) Production of two hemopoietic growth factors is differentially regulated in single T lymphocytes activated with an anti-T cell receptor antibody. J Immuno1140: 1159–1167

    Google Scholar 

  • Kerkhofs H, Hagemeijer A, Leeksma CHW, Abels J, Den Ottolander GJ, Somers R, Gerrits WBJ, Langenhuiyen MMA, Von DenBorne AEG, VanHemel JO, Geraedts JPM (1982) The 5q-chromosome abnormality in hematologic disorders: a collaborative study of 34 cases form the Netherlands. Br J Haematol 52: 365–381

    Article  PubMed  CAS  Google Scholar 

  • Kimoto M, Kindler V, Higaki M, Ody C, Izui S, Vassalli P (1988) Recombinant murine IL-3 fails to stimulate T or B lymphopoiesis in vivo, but enhances immune responses to T cell-dependent antigens. J Immunol 140: 1889–1894

    PubMed  CAS  Google Scholar 

  • Kindler V, Thorens B, de Kossodo S, Allet B, Eliason JF, Thatcher D, Farber N, Vassalli P (1986) Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc Natl Acad Sci USA 83: 1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Kipreos ET, Wang JYJ (1988) Reversible dependence on growth factor interleukin-3 in myeloid cells expressing temperature sensitive v-abl oncogene. Oncogene Res 2: 277–284

    PubMed  CAS  Google Scholar 

  • Kitamura T, Tange T, Chiba S, Kuwaki T, Mitani K, Urabe A, Takaku F (1989) Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3 or erythropoietin. Blood 73: 375–380

    PubMed  CAS  Google Scholar 

  • Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R (1987) Recombinant human TNF a stimulates production of granulocyte colony-stimulating factor. Blood 70: 55–59

    PubMed  CAS  Google Scholar 

  • Koike K, Ogawa M, Ihle JN, Miyake T, Shimizu T, Miyajima A, Yokota T, Arai K (1987) Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: comparison with the effects of interleukin-3. J Cell Physiol 131: 458–464

    Article  PubMed  CAS  Google Scholar 

  • Koyasu SA, Tojo A, Miyajima A, Akiyama T, Kasuga M, Urabe A, Schreurs J, Arai K, Takaku F, Yahara I (1988) Interleukin 3-specific tyrosine phosphorylation of a membrane glycoprotein of M 150000 in multi-factor-dependent myeloid cell lines. EMBO J 6: 3979–3984

    Google Scholar 

  • Lange B, Valtieri M, Caracciolo D, Mavilio F, Gemperlein I, Griffin C, Emanuel B, Finan J, Nowell P, Rovera G (1987) Growth factor requirements for childhood leukemia: establishment of GM-CSF-dependent cell lines. Blood 70: 192–199

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1985) Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4: 3145–3151

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in Balb/c 3T3 cells: Coordinate regulation with c-fos and c-myc. Proc Natl Acad Sci USA 84: 1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Leary AG, Yang Y-C, Clark SC, Gasson JC, Golde DW, Ogawa M (1988) Recombinant gibbon interleukin-3 (IL-3) supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocytic-macrophage colony-stimulating factor ( GM-CSF ). Blood 71: 1759–1763

    PubMed  CAS  Google Scholar 

  • Le Beau MM (1987) Cytogenetic and molecular analysis of the del(5q) in myeloid disorders: evidence for the involvement of colony-stimulating factor and fms genes. In: Gale RP, Golde DW (eds) Recent advances in leukemia and lymphoma. Liss, New York, pp 71–81

    Google Scholar 

  • Le Beau MM, Epstein ND, O’Brien SJ, Nienhuis AW, Yang YC, Clark SC, Rowley JD (1987) The interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci USA 84: 5913–5917

    Article  PubMed  Google Scholar 

  • Lee F, Yokota T, Otsuka T, Meyerson P, Villaret D, Coffman R, Mosmann T, Ren-nick D, Roehm N, Smith C, Zlotnik A, Arai K (1986) Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell-and mast-cell-stimulating activities. Proc Natl Acad Sci USA 83: 2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Lee F, Abrams J, Arai K et al. (1988) The expression and characterization of recombinant mouse IL-3. In: Schrader JW (ed) Lymphokines 15. Interleukin 3: the panspecific hemopoietin. Academic, New York, pp 163–182

    Google Scholar 

  • Lee JC, Hapel AJ, Ihle JN (1982) Constitutive production of a unique lymphokine (IL-3) by the WEHI-3 cell line. J Immunol 128: 2392–2398

    Google Scholar 

  • Lee M, Segal GM, Bagby GC (1987) Interleukin-1 induces human bone marrow-derived fibroblasts to produce multilineage hematopoietic growth factors. Exp Hematol 15: 983–988

    PubMed  CAS  Google Scholar 

  • Le Gros GS, Gillis S, Watson JD (1985) Induction of IL2 responsiveness in a murine IL3-dependent cell line. J Immunol 135: 4009–4014

    PubMed  Google Scholar 

  • Le Gros GS, Shackell P, Le Gros JE, Watson JD (1987) Interleukin 2 regulates the expression of IL2 receptors on Interleukin 3-dependent bone marrow-derived cell lines. J Immunol 138: 478–483

    PubMed  Google Scholar 

  • Le Gros JE, Jenkins DR, Prestidge RL, Watson JD (1987) Expression of genes in cloned murine cell lines that can be maintained in both interleukin 2- and interleukin 3-dependent growth states. Immunol Cell Biol 65: 57–69

    Article  PubMed  Google Scholar 

  • Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45: 917–927

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Li CL, Cuiter RL, Johnson GR (1987) Characterization of hemopoietic activities in media conditioned by a murine marrow-derived adherent cell line, B. Ad. Exp Hemato115: 373–381

    Google Scholar 

  • Lord BI, Molineux G, Testa NG, Kelly M, Spooncer E, Dexter TM (1986) The kinetic response of haemopoietic precursor cells, in vivo, to highly purified, recombinant interleukin-3. Lymphokine Res 5: 97–104

    PubMed  CAS  Google Scholar 

  • Lutzker S, Rothman P, Pollock R, Coffman R, Alt FA (1988) Mitogen-and IL-4regulated expression of germ-line IG y2b transcripts: evidence for directed heavy chain class switching. Cell 53: 177–184

    Article  PubMed  CAS  Google Scholar 

  • May WS, Ihle JN (1986) Affinity isolation of the interleukin-3 surface receptor. Biochem Biophys Res Commun 135: 870–879

    Article  PubMed  CAS  Google Scholar 

  • Messner HA, Yamasaki K, Jamal N, Minden MM, Yang YC, Wong GG, Clark SC (1987) Growth of human hemopoietic colonies in response to recombinant gibbon interleukin 3: comparison with human recombinant granulocyte and granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 84: 6765–6769

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF, Williamson DJ (1986) Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68: 46–57

    PubMed  CAS  Google Scholar 

  • Miyajima A, Schreurs J, Otsu K, Kondo A, Arai K, Maeda S (1987) Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene 58: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A, Miyatake S, Schreurs J, DeVries J, Arai N, Yokota T, Arai K (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J 2: 2462–2473

    PubMed  CAS  Google Scholar 

  • Miyatake S, Yokota T, Lee F, Arai K (1985) Structure of the chromosomal gene for murine interleukin 3. Proc Natl Acad Sci USA 82: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Morishita K, Parker DS, Mucenski ML, Copeland NG, Ihle JN (1988) Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Morla AO, Schreurs J, Miyajima A, Wang JWJ (1988) Hematopoietic growth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3dependent murine cell lines. Mol Cell Biol 8: 2214–2218

    PubMed  CAS  Google Scholar 

  • Mosmann T, Cherwinski H, Bond M, Giedlin M, Coffman R (1986a) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2438–2457

    Google Scholar 

  • Mosmann TR, Bond MW, Coffman RL, Ohara J, Paul WE (1986b) T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc Natl Acad Sci USA 83: 5654–5658

    Article  PubMed  CAS  Google Scholar 

  • Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC III, Jenkins NA, Copeland NG (1988a) Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 8: 301–308

    PubMed  CAS  Google Scholar 

  • Mucenski ML, Taylor BA, Copeland NG, Jenkins NA (1988b) Chromosomal location of Evi-1, A common site of ecotropic viral integration in AKXD murine myeloid tumors. Oncogene Res 2: 219–233

    PubMed  CAS  Google Scholar 

  • Munker R, Gasson J, Ogawa M, Koeffler HP (1986) Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor. Nature 323: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Nakahata T, Ogawa M (1982) Identification in culture of a class of hemopoietic colony-forming units with extensive capability of self-renewal and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA 79: 3843–3847

    Article  PubMed  CAS  Google Scholar 

  • Nakahata T, Gross AJ, Ogawa M (1982) A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 113: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Nakahata T, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Ando O, Yagi Y, Tadokoro K, Akabane T (1986) Extensive proliferation of mature connective-tissue type mast cells in vitro. Nature 324: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Naparstek E, Pierce J, Metcalf D, Shadduck R, Ihle J, Leder A, Sakakeeny MA, Wagner K, Falco J, FitzGerald TJ et al. (1986) Induction of growth alterations in factor-dependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Blood 67: 1395–1403

    PubMed  CAS  Google Scholar 

  • Nicola NA, Metcalf D (1985) Binding of iodinated multipotential colony-stimulating factor to normal murine hemopoietic cells. J Cell Physiol 124: 313

    Article  PubMed  CAS  Google Scholar 

  • Nicola NA, Peterson L (1986) Identification of distinct receptors for two hemopoietic growth factors (Granulocyte colony-stimulating factor and multipotential colony-stimulating factor) by chemical cross-linking. J Biol Chem 261: 12 384–12389

    Google Scholar 

  • Nienhuis AW, Bunn HF, Turner PH, Gopal TV, Nash WG, O’Brien SJ, Sherr CJ (1985) Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q-syndrome. Cell 42: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Orosz CG, Roopernian DC, Bach FH (1983) Phorbol myristate acetate and in vitro T lymphocyte function. I. PMA may contaminate lymphokine preparations and can interfere with interleukin bioassays. J Immunol 130: 1764–1772

    PubMed  CAS  Google Scholar 

  • Otsu K, Nakano T, Kanakura Y, Asai H, Katz HR, Austen KF, Stevens RL, Galli SJ, Kitamura Y (1987) Phenotypic changes of bone marrow-derived mast cells after intraperitoneal transfer into W/Wv mice that are genetically deficient in mast cells. J Exp Med 165: 615–627

    Article  PubMed  CAS  Google Scholar 

  • Overell RW, Watson JD, Gallis B, Weisser KE, Cosman D, Widmer MB (1987) Nature and specificity of lymphokine independence induced by a selectable retroviral vector expressing v-src. Mol Cell Biol 7: 3394–3401

    PubMed  CAS  Google Scholar 

  • Palacios R (1985) Cyclosporin A inhibits antigen-and lectin-induced but not constitutive production of interleukin 3. Eur J Immunol 15: 204–206

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Garland J (1984) Distinct mechanisms may account for the growth-promoting activity of interleukin 3 on cells of lymphoid and myeloid origin. Proc Natl Acad Sci USA 81: 1208–1211

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Steinmetz M (1985) IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41: 727–734

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Von Boehmer H (1986) Requirements for growth of immature thymocytes from fetal and adult mice in vitro. Eur J Immunol 16: 12–19

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Henson G, Steinmetz M, McKearn JP (1984) Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature 309: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Neri T, Brockhaus M (1986) Monoclonal antibodies specific for interleukin 3-sensitive murine cells. J Exp Med 163: 369–382

    Article  PubMed  CAS  Google Scholar 

  • Palacios R, Kiefer M, Brockhaus M, Karjalainen K, Dembic Z, Kisielow P, Von Boehmer H (1987) Molecular, cellular, and functional properties of bone marrow T lymphocyte progenitor clones. J Exp Med 166: 12–32

    Article  PubMed  CAS  Google Scholar 

  • Palaszynski EW, Ihle JN (1984) Evidence for specific receptors for interleukin 3 on lymphokine dependent cell lines established from long-term bone marrow cultures. J Immunol 132: 1872–1878

    PubMed  CAS  Google Scholar 

  • Park LS, Friend D, Gillis S, Urdal DL (1986) Characterization of the cell surface receptor for a multi-lineage colony-stimulating factor (CSF-2a). J Biol Chem 261: 205–210

    PubMed  CAS  Google Scholar 

  • Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA, Sherr CJ, Diaz MO, Rowley JD (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84: 2970–2974

    Article  PubMed  CAS  Google Scholar 

  • Pierce JH, Di Fiore PP, Aaronson SA, Potter M, Pumphrey J, Scott A, Ihle N (1985) Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41: 685–693

    Article  PubMed  CAS  Google Scholar 

  • Pierce JH, Ruggiero M, Fleming TP, Di Fiore PP, Greenberger JS, Varticovski L, Schlessinger J, Rovera G, Aaronson SA (1988) Signal transduction through the EGF receptor transfected in IL-3-dependent hematopoietic cells. Science 239: 628–631

    Article  PubMed  CAS  Google Scholar 

  • Prystowsky MB, Ely JM, Beller DI, Eisenberg L, Goldman J, Goldman M, Goldwasser E, Ihle J, Quintans J, Remold H, Vogel S, Fitch FW (1982) Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by cloned T lymphocytes. J Immunol 129: 2337–2344

    PubMed  CAS  Google Scholar 

  • Prystowsky MB, Otten G, Naujokas MF, Vardiman J, Ihle JN, Goldwasser E, Fitch FW (1984) Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3. Am J Pathol 117: 171–179

    PubMed  CAS  Google Scholar 

  • Quesenberry PJ, Ihle JN, McGrath E (1985) The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood 65: 214–217

    PubMed  CAS  Google Scholar 

  • Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN (1985) Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317: 434–438

    Article  PubMed  CAS  Google Scholar 

  • Razin E, Stevens RL, Akiyama F, Schmid K, Austen KF (1982) Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J Biol Chem 257: 7229–7239

    PubMed  CAS  Google Scholar 

  • Razin E, Ihle JN, Seldin D, Mencia-Huerta J-M, Katz HR, LeBlance A, Hein A, Caulfield JP, Austen KF, Stevens RL (1984) Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 132: 1479–1486

    CAS  Google Scholar 

  • Rein A, Keller J, Schultz AM, Holmes KL, Medicus R, Ihle JN (1985) Infection of immune mast cells by Harvey sarcoma virus: immortalization without loss of requirement for interleukin-3. Mol Cell Biol 5: 2257–2264

    PubMed  CAS  Google Scholar 

  • Rennick DM, Lee FD, Yokota T, Arai KI, Cantor H, Nabel GJ (1985) A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin 3. J Immunol 134: 910–914

    PubMed  CAS  Google Scholar 

  • Rennick D, Yang G, Muller-Sieburg C, Smith C, Arai N, Takabe Y, Gemmell L (1987) Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factor-dependent growth of hemopoietic progenitor cells. Proc Natl Acad Sci USA 84: 6889–6893

    Article  PubMed  CAS  Google Scholar 

  • Rittling SR, Baserga R (1987) Regulatory mechanisms in the expression of cell cycle dependent genes. Anticancer Res 7: 541–552

    PubMed  CAS  Google Scholar 

  • Robinson BE, McGrath HE, Quesenberry PJ (1987) Recombinant murine granulocyte macrophage colony-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. J Clin Invest 79: 1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Rossio JL, Ruscetti FW, Farrar WL (1986) Ligand-specific calcium mobilization in IL 2 and IL 3 dependent cell lines. Lymphokine Res 5: 163–172

    PubMed  CAS  Google Scholar 

  • Rosson D, Reddy EP (1987) Mechanism of activation of the myb oncogene in myeloid leukemias. Ann NY Acad Sci 511: 219–231

    Article  PubMed  CAS  Google Scholar 

  • Rosson D, Dugan D, Reddy EP (1987) Aberrant splicing events that are induced by proviral integration: implications for myb oncogene activation. Proc Natl Acad Sci USA 84: 3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Rovera G, Valtieri M, Mavilio F, Reddy EP (1987) Effect of Abelson murine leukemia virus on granulocytic differentiation and interleukin-3 dependence of a murine progenitor cell line. Oncogene 1: 29–35

    PubMed  CAS  Google Scholar 

  • Sanderson CJ, Warren DJ, Strath M (1985a) Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162: 60–74

    Article  PubMed  CAS  Google Scholar 

  • Sanderson CJ, Strath M, Warren DJ, O’Garra A, Kirkwood TB (1985b) The production of lymphokines by primary alloreactive T-cell clones: a co-ordinate analysis of 233 clones in seven lymphokine assays. Immunology 56: 575–584

    PubMed  CAS  Google Scholar 

  • Sanderson CJ, Campbell HD, Young IG (1988) Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on B cells in man and mouse. Immunol Rec 102: 29–50

    Article  CAS  Google Scholar 

  • Schwarzbaum S, Halpern R, Diamond B (1984) The generation of macrophage-like cell lines by transfection with SV40 origin defective DNA. J Immunol 132: 1158–1162

    PubMed  CAS  Google Scholar 

  • Seger R, Yarden Y, Kashles O, Goldblatt D, Schlessinger J, Shaltiel S (1988) The epidermal growth factor receptor as a substrate for a kinase-splitting membranal proteinase. J Biol Chem 263: 3496–3500

    PubMed  CAS  Google Scholar 

  • Shannon MF, Gamble JR, Vadas MA (1988) Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci USA 85: 674–678

    Article  PubMed  CAS  Google Scholar 

  • Shen-Ong GL, Morse HC III, Potter M, Mushinski JF (1986) Two modes of c-myb activation in virus-induced mouse myeloid tumors. Mol Cell Biol 6: 380–392 [published erratum appears in Mol Cell Biol 1986:2756]

    Google Scholar 

  • Sideras P, Palacios R (1987) Bone marrow pro-T and pro-B lymphocyte clones express functional receptors for interleukin (IL) 3 and IL 4/BSF-1 and nonfunctional receptors for IL 2. Eur J Immunol 17: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Rennick DM (1986) Characterization of a murine lymphokine distinct from interleukin 2 and interleukin 3 (IL-3) possessing a T-cell growth factor activity and a mast-cell growth factor activity that synergizes with IL-3. Proc Natl Acad Sci USA 83: 1857–1861

    Article  PubMed  CAS  Google Scholar 

  • Sokal G, Michaux JL, VanDenBergh H, Cordier A, Rodhain J, Ferrant A, Moriau M, Debruyere M, Sonnet J (1975) A new hematologic syndrome with a distinct karyotype: the 5q-chromosome. Blood 45: 519–533

    Google Scholar 

  • Sorensen P, Farber NM, Krystal G (1986) Identification of the interleukin-3 receptor using an iodinatable cleavable, photoreactive cross-linking agent. J Biol Chem 261: 9094–9097

    PubMed  CAS  Google Scholar 

  • Sparrow RL, Swee-Huat O, Williams N (1987) Haemopoietic growth factors stimulating murine megakaryocytopoiesis: interleukin-3 is immunologically distinct from megakaryocyte-potentiator. Leuk Res 11: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Spivak JL, Smith RR, Ihle JN (1985) Interleukin 3 promotes the in vitro proliferation of murine pluripotent hematopoietic stem cells. J Clin Invest 76: 1613–1621

    Article  PubMed  CAS  Google Scholar 

  • Stocking C, Loliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988) Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 53: 869–879

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Suda J, Ogawa M (1983) Proliferative kinetics and differentiation of murine blast cell colonies in culture: evidence for variable GO periods and constant doubling rates of early pluripotent hemopoietic progenitors. J Cell Physiol 117: 308–318

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Suda J, Ogawa M, Ihle JN (1985) Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physiol 124: 182–190

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Suda J, Kajigaya S, Nagata S, Asano S, Saito M, Miura Y (1987) Effects of recombinant murine granulocyte colony-stimulating factor on granulocyte-macrophage and blast colony formation. Exp Hematol 15: 958–965

    PubMed  CAS  Google Scholar 

  • Sugawara M, Hattori C, Tezuka E, Tamura S, Ohta Y (1988) Monoclonal autoantibodies with interleukin 3-like activity derived from a MRL/lpr mouse. J Immunol 140: 526–530

    PubMed  CAS  Google Scholar 

  • Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RG, Tasi-Morris C-H (1987) A novel early growth response gene rapidly induced by fibroblast, epithelial and lymphocyte mitogens. Oncogene Res 1: 343–355

    PubMed  CAS  Google Scholar 

  • Sutherland GR, Baker E, Callen DF, Campbell HD, Young IG, Sanderson CJ, Garson OM, Lopez AF, Vadas MA (1988) Interleukin-5 is at 5q31 and is deleted in the 5q-syndrome. Blood 71: 1150–1152

    PubMed  CAS  Google Scholar 

  • Tinegate H, Gaunt L, Hamilton PJ (1983) The 5q-syndrome: an underdiagnosed form of macrocytic anemia. Br J Haematol 54: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Todokoro K, Yamamoto A, Amanuma H, Ikawa Y (1985) Isolation and characterization of a genomic DDD mouse interleukin-3 gene. Gene 39: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Tsao CJ, Tojo A, Fukamachi H, Kitamura T, Saito T, Urabe A, Takaku F (1988) Expression of the functional erythropoietin receptors on interleukin 3-dependent murine cell lines. J Immunol 140: 89–93

    PubMed  CAS  Google Scholar 

  • Valtieri M, Santoli D, Caracciolo D, Kreider BL, Altmann SW, Tweardy DJ, Gemperlein I, Mavilio F, Lange B, Rovera G (1987) Establishment and characteristics of an undifferentiated human T leukemia cell line which requires GM-CSF for growth. J Immunol 138: 4042–4050

    PubMed  CAS  Google Scholar 

  • Vellenga E, Griffin JD (1987) The biology of acute myeloblastic leukemia. Semin Oncol 14: 365–371

    PubMed  CAS  Google Scholar 

  • Vellenga E, Ostapovicz D, O’Rourke B, Griffin JD (1987a) Effects on recombinant IL-3, GM-CSF, and G-CSF on proliferation of leukemic clonogenic cells in short-term and long-term cultures. Leukemia 1: 584–589

    PubMed  CAS  Google Scholar 

  • Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD (1987b) The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69: 1771–1776

    PubMed  CAS  Google Scholar 

  • Walker F, Nicola NA, Metcalf D, Burgess AW (1985) Hierarchical down-modulation of hemopoietic growth factor receptors. Cell 43: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Warren DJ, Moore MA (1988) Synergism among interleukin 1, interleukin 3, and interleukin 5 in the production of eosinophils from primitive hemopoietic stem cells. J Immunol 140: 94–99

    PubMed  CAS  Google Scholar 

  • Warren HS, Hargreaves J, Hapel AJ (1985) Some interleukin-3 dependent mast-cell lines also respond to interleukin-2. Lymphokine Res 4: 195–204

    PubMed  CAS  Google Scholar 

  • Watson JD, Le Gros GS, Overell RW, Conlon P, Widmer M, Gillis S (1987) Effect of infection with murine recombinant retroviruses containing the v-src oncogene on interleukin 2- and interleukin 3-dependent growth states. J Immunol 139: 123–129

    PubMed  CAS  Google Scholar 

  • Watson JD, Jenkins DR, Eszes M, Leung E (1988) Effect of granulocyte-macrophage colony-stimulating factor and interleukin 3 on the v-src oncogene. Inhibition of tyrosine kinase activity in the absence of changes in gene expression. J Immunol 140: 501–507

    PubMed  CAS  Google Scholar 

  • Weinstein Y, Ihle JN, Lavu S, Reddy EP (1986) Truncation of the c-myb gene by a retroviral integration in an interleukin-3 dependent myeloid leukemia cell line. Proc Natl Acad Sci USA 83: 5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Weinstein Y, Cleveland JL, Askew DS, Rapp UR, Ihle JN (1987) Insertion and truncation of c-myb by MuLV in a myeloid cell line derived from cultures of normal hematopoietic cells. J Virol 61: 2339–2343

    PubMed  CAS  Google Scholar 

  • Wheeler EF, Askew D, May S, Ihle JN, Sherr CJ (1987) The v-fms oncogene induces factor-independent growth and transformation of the interleukin-3-dependent myeloid cell line FDC-Pl. Mol Cell Biol 7: 1673–1680

    PubMed  CAS  Google Scholar 

  • Whetton AD, Dexter TM (1983) Effect of haemopoetic growth factor on intracellular ATP levels. Nature 303: 629–631

    Article  PubMed  CAS  Google Scholar 

  • Whetton AD, Dexter TM (1988) The mode of action of interleukin 3 in promoting survival, proliferation, and differentiation of hemopoietic progenitor cells. In: Schrader JW (ed) Lymphokines 15 Interleukin 3: The panspecific hemopoietin, Academic Press, Inc., New York, p 355–374

    Google Scholar 

  • Whetton AD, Heyworth CM, Dexter TM (1986a) Phorbol esters activate protein kinase C and glucose transport and can replace the requirement for growth factor in interleukin-3-dependent multipotent stem cells. J Cell Sci 84: 93–104

    PubMed  CAS  Google Scholar 

  • Whetton AD, Monk PN, Consalvey SD, Downes CP (1986b) The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO J 5: 3281–3286

    PubMed  CAS  Google Scholar 

  • Williams DA, Lemischka IR, Nathans DG, Mulligan RC (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski LP, Hirschhorn K (1983) Acquired partial deletions of the long arm of chromosome 5 in hematologic disorders. Am J Hematol 15: 295–310

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A, Takatsu K (1988) Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167: 43–56

    Article  PubMed  CAS  Google Scholar 

  • Yang YC, Clark SC (1988) Molecular cloning of a primate cDNA and the human gene for interleukin 3. In: Schrader JW (ed) Lymphokines 15. Interleukin 3: the panspecific hemopoietin. Academic, New York, pp 375–391

    Google Scholar 

  • Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG, Clark SC (1986) Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47: 3–10

    Article  PubMed  CAS  Google Scholar 

  • Yang YC, Kovacic S, Kriz R, Wolf S, Clark SC, Wellems TE, Nienhuis A, Epstein H (1988a) The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71: 958–961

    PubMed  CAS  Google Scholar 

  • Yang YC, Tsai S, Wong GG, Clark SC (1988b) Interleukin-1 regulation of hematopoietic growth factor production by human stromal fibroblasts. J Cell Physiol 134: 292–296

    Article  PubMed  CAS  Google Scholar 

  • Ymer S, Tucker WQ, Sanderson CJ, Hapel AJ, Campbell HD, Young IG (1985) Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Lee F, Rennick D, Hall C, Arai N, Mosmann T, Nabel G, Cantor H, Arai K (1984) Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth-factor activity in monkey cells. Proc Natl Acad Sci USA 81: 1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS (1986) Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J Clin Invest 77: 1857–1863

    Article  PubMed  CAS  Google Scholar 

  • Zumstein P, Stiles CD (1987) Molecular cloning of gene sequences that are regulated by insulin-like growth factor I. J Biol Chem 262: 11252–11260

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ihle, J.N. (1990). Interleukin-3. In: Sporn, M.B., Roberts, A.B. (eds) Peptide Growth Factors and Their Receptors I. Handbook of Experimental Pharmacology, vol 95 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49295-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49295-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49297-6

  • Online ISBN: 978-3-642-49295-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics