Advertisement

Entry Radiative Transfer

  • F. K. Moore
Part of the Applied Physics and Engineering book series (APPLIED PHYS, volume 2)

Abstract

During superorbital re-entry of lunar and planetary probes, radiation from the shock-heated gas ahead of the vehicle becomes an important and even predominant part of the heat load to be withstood by the ablative surface. Kivel1 compared convective and radiative heat loads for an ICBM entering at about 20,000 ft/sec and for a Mars probe entering at about 40,000 ft/sec. Figures 5-1 and 5-2 are sketched from Kivel’s paper:

Keywords

Heat Flux Shock Wave Radiative Transfer Heat Load Shock Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kivel, B.: Radiation from Hot Air and Its Effect on Stagnation-Point Heating. JAS, 28, pp. 96–103 (1961).MATHGoogle Scholar
  2. 2.
    Allen, H. J.: Gasdynamics Problems of Space Vehicles, Proc. NASA-Univ. Conf., Vol. 21, NASA SP-11, pp. 251–267, Chicago, 211, Nov. 1–3, (1962).Google Scholar
  3. 3.
    Allen, H. J., Seiff, A., and Winovich, W.: Aerodynamic Heating of Conical Entry Bodies at Speeds in Excess of Earth Parabolic Speed. NASA TR R-185 (1963).Google Scholar
  4. 4.
    Goulard, R.: The Coupling of Radiation and Convection in Detached Shock Layers. J. Quant. Spectrosc. Radiat. Transfer. 1, pp. 249–257 (1961).CrossRefGoogle Scholar
  5. 5.
    Meyerott, R. E.: Radiation Heat Transfer to Hypersonic Vehicles, 3rd AGARD Comb. & Prop. Panel Colloquium, Palermo, Sicily.Google Scholar
  6. 6.
    Eddington, A. S.: The Internal Constitution of the Stars, Dover Publications, Inc., New York, 1959.Google Scholar
  7. 7.
    Chandrasekher, S.: Radiative Transfer, Oxford Univ. Press, Oxford, 1950.Google Scholar
  8. 8.
    Kourganoff, V.: Basic Methods in Transfer Problems, Clarendon Press, Oxford, 1952.MATHGoogle Scholar
  9. 9.
    Goody, R. M.: Atmospheric Radiation. I. Theoretical Basis, Oxford Univ. Press, Oxford, 1964.Google Scholar
  10. 10.
    Weinberg, A. M., and Wigner, E. P.: The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, 1958.Google Scholar
  11. 11.
    Jakob, M.: Heat Transfer, Vol. 1, J. Wiley & Sons, New York, 1955.Google Scholar
  12. 12.
    Gebhart, B.: Heat Transfer. McGraw-Hill, New York, 1961.Google Scholar
  13. 13.
    Cooper, R. S.: Prospects for Advanced High-Thrust Nuclear Propulsion, Astronaut and Aeronaut. 4: 1, pp. 54–60 (1966).Google Scholar
  14. 14.
    Slater, J. C: Introduction to Chemical Physics, McGraw-Hill, New York, 1939.Google Scholar
  15. 15.
    Vincenti, W. and Baldwin, B.: Effect of Thermal Radiation on the Propagation of Plane Acoustic Waves, J. Fluid Mech., 12: Part 3, pp. 449–477.Google Scholar
  16. 16.
    Lick, W.: Energy Transfer by Radiation and Conduction, Proc. Heat Transf. Fluid Mech. Inst., p. 14 (1963).Google Scholar
  17. 17.
    Traugott, S. C. and Wang, K. G: On Differential Methods for Radiant Heat Transfer, Int. J. Heat Mass Transf. 7, p. 269 (1964).CrossRefGoogle Scholar
  18. 18.
    Cheng, P.: Two-Dimensional Radiating Gas Flow by a Moment Method, Jour. AIAA 2, pp. 1662–1664 (1964).MATHCrossRefGoogle Scholar
  19. 19.
    Wilkinson, P. G.: Molecular Spectra in the Vacuum Ultraviolet, Jour. Molec. Spectr. 6, pp. 1–57 (1961).CrossRefGoogle Scholar
  20. 20.
    Gilmore, F. R.: Approximate Radiation Properties of Air between 2000 and 8000 °K. Rand Memo RM 3997-ARPA (March 1964).Google Scholar
  21. 21.
    Traugott, S. G: Shock Structure in a Radiating, Heat Conducting, and Viscous Gas. Martin Co. Report RR-57, May 1964.Google Scholar
  22. 22.
    Allen, R. A., Rose, P. H., and Camm, J. C.: Nonequilibrium and Equilibrium Radiation at Super-Satellite Re-entry Velocities, IAS paper 63–77; also Avco-Everett Res. Rept. 156 (1962).Google Scholar
  23. 23.
    Gruszczynski, J. S., and Warren, W. R., Jr.: Study of Equilibrium Air Total Radiation, AIAA Paper No. 66–103 (1966).Google Scholar
  24. 24.
    Arnold, J. O., Reis, V. H., and Woodward, H. T.: Studies of Shock-Layer Radiation of Bodies Entering Planetary Atmospheres. Jour. AIAA 3: 11, pp. 2019–2026 (1965).CrossRefGoogle Scholar
  25. 25.
    Carrier, G. F., and Avrett, E. H.: A Non-gray Radiative Transfer Problem, Astrophys. Jour. 134, p. 469 (1961).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Heaslet, M. A. and Warming, R. F.: Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium. Int. J. Heat Mass Transfer, 8, pp. 979–994 (1965).CrossRefGoogle Scholar
  27. 27.
    Lick, W.: Transient Energy Transfer by Radiation and Conduction, Int. J. Heat Mass Transfer 8, pp. 119–129 (1965).CrossRefGoogle Scholar
  28. 28.
    Baldwin, B.: The Propagation of Plane Acoustic Waves in a Radiating Gas, NASA TR R-138 (1962).Google Scholar
  29. 29.
    Lick, W. J.: The Propagation of Small Disturbances in a Radiating Gas, J. Fluid Mech., 8: Part 2, pp. 274–284 (1964).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Moore, F. K.: Effect of Radiative Transfer on a Sound Wave Traveling in a Gas Havingy Near One, Phys. Fluids 9, pp. 70–80 (1966).CrossRefGoogle Scholar
  31. 31.
    Heaslet, M. A. and Baldwin, B. S.: Predictions of the Structure of Radiation-Resisted Shock Waves. Phys. Fluids, 6, pp. 781–791 (1963).MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mitchner, M. and Vinlkur, M.: Radiation Smoothing of Shocks with and without a Magnetic Field. Phys. Fluids 6, pp. 1682–1692 (1963).MATHCrossRefGoogle Scholar
  33. 33.
    Zeldovich, Ia. B.: Shock Waves of Large Amplitude in Air, Soviet Physics JETP 5: 5, p. 919 (1957).Google Scholar
  34. 34.
    Raizer, I.: On the Structure of the Front of Strong Shock Waves in Gases, Soviet Physics JETP, 5: 6, p. 1242 (1957).MathSciNetGoogle Scholar
  35. 35.
    Goulard, R.: Radiation Transfer Regimes in Hypersonic Flight, in Supersonic Flow, Chemical Processes and Radiative Transfer, Pergamon Press, New York, 1964.Google Scholar
  36. 36.
    Yoshikawa, K. K., and Chapman, D. R.: Radiative Heat Transfer and Absorption Behind a Hypersonic Normal Shock Wave, NASA TN D-1424 (1962).Google Scholar
  37. 37.
    Thomas, P. D.: Transparency Assumption in Hypersonic Radiative Gasdynamics, Jour. AIAA 3, pp. 1401–1408 (1965).MATHCrossRefGoogle Scholar
  38. 38.
    Howe, J. T. and Viegas, J. R.: Solutions of the Ionized Radiating Shock Layer Including Reabsorption and Foreign Species Effects, and Stagnation Region Heat Transfer, NASA TR R-159 (1963).Google Scholar
  39. 39.
    Kennet, H.: Radiation-Convection Interaction Around a Sphere in Hypersonic Flow, Jour. ARS 32, pp. 1616–1617 (1962).MATHGoogle Scholar
  40. 40.
    Wilson, K. H., and Hoshizaki, H.: Inviscid, Nonadiabatic Flow Around Blunt Bodies, Jour. AIAA 3, 67–75 (1965).MATHCrossRefGoogle Scholar
  41. 41.
    Hoshizaki, H., and Wilson, K. H.: Viscous, Radiating Shock Layer About a Blunt Body, Jour. AIAA 3, pp. 1614–1623 (1965).CrossRefGoogle Scholar
  42. 42.
    Hoshizaki, H., Wilson, K. H.: Convective and Radiative Heat Transfer During Superorbital Entry, AIAA Paper 66–106 (Jan. 1966).Google Scholar
  43. 43.
    Seiff, A., and Tauber, M. E.: Optimum Conical Bodies for Grazing Hyperbolic Entry, Jour. AIAA 4, pp. 61–68 (1966).CrossRefGoogle Scholar
  44. 44.
    Marrone, P. V.: Normal Shock Waves in Air: Equilibrium Composition and Flow Parameters for Velocities from 26,000 to 50,000 ft/sec, CAL Rep. No. AG-1729-A-2 (Aug. 1962).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • F. K. Moore
    • 1
  1. 1.Department of Thermal EngineeringCornell UniversityUSA

Personalised recommendations