Skip to main content

Bootstrapping the Sample Quantile: A Survey

  • Conference paper
Bootstrapping and Related Techniques

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 376))

Abstract

Let X 1,…, X n be independent and identically distributed (≡ iid) random variables (≡ rvs) with common distribution function (≡ df) F and let T(F) be an unknown parameter of interest. The natural nonparametric estimator of T(F) is T(F n ), where \( {F_n}(t): = {n^{{ - 1}}}{\sum\nolimits_{{i = 1}}^n 1_{{\left( { - \infty, t} \right]}}}\left( {{X_i}} \right),t \in \mathbb{R} \), denotes the empirical df pertaining to the sample X 1 ,…, X n Our target function is now the df of the estimator T(F n ), centered at the unknown parameter T(F), i.e.

$$ {G_n}(x): = {P_F}\left\{ {{n^{{\frac{1}{2}}}}\left( {T\left( {{F_n}} \right) - T(F} \right) \leqslant x} \right\},x \in \mathbb{R} $$
(1)

In a great many of cases, the factor n 1/2 is the corrected standardization constant to ensure the nondegenerate limit distribution of n 1/2 (T(F n) -T(F)) as n increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beran, R.J. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74, 457–468.

    Article  Google Scholar 

  • Dohman, B. (1990). Confidence intervals for small sample sizes: Bootstrap vs. standard methods. Diplom thesis, University of Siegen (in German).

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1–26.

    Article  Google Scholar 

  • Efron, B. (1982). The Jackknife, the Bootstrap and other Resampling Plans. SIAM, Philadelphia.

    Book  Google Scholar 

  • Falk, M. (1983). Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. Statist. Neerlandica 37, 73–83.

    Article  Google Scholar 

  • Falk, M. (1984). Relative deficiency of kernel type estimators of quantiles. Ann. Statist. 12, 261–268.

    Article  Google Scholar 

  • Falk, M. (1985). Asymptotic normality of the kernel quantile estimator. Ann. Statist. 13, 428–433.

    Article  Google Scholar 

  • Falk, M. (1990a). Weak convergence of the maximum error of the bootstrap quantile estimate. Statist. Probab. Letters, 10, 301–305.

    Article  Google Scholar 

  • Falk, M. (1990b). Functional limit theorems for inverse bootstrap processes of sample quantiles. Tentatively accepted for publication in Statist. Probab. Letters.

    Google Scholar 

  • Falk, M. and Janas, D. (1990). Edgeworth expansions for studentized and prepivoted sample quantiles with applications to confidence intervals. Preprint.

    Google Scholar 

  • Falk, M. and Kaufmann (1989). Coverage probabilities of bootstrap confidence intervals for quantiles. Ann. Statist., to appear.

    Google Scholar 

  • Falk, M. and Reiss, R.-D. (1989a). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17, 362–371.

    Article  Google Scholar 

  • Falk, M. and Reiss, R.-D. (1989b). Bootstrapping the distance between smooth bootstrap and sample quantile distribution. Probab. Th. Rel. Fields 82, 177–186.

    Article  Google Scholar 

  • Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16, 927–953.

    Article  Google Scholar 

  • Hall, P. and Martin, M.A. (1989). A note on the accuracy of bootstrap percentile method confidence intervals for a quantile. Statist. Probab. Letters 8, 197–200.

    Article  Google Scholar 

  • Hall, P., DiCiccio, T.J. and Romano, J.P. (1989). On smoothing and the bootstrap. Ann. Statist. 17, 692–704.

    Article  Google Scholar 

  • Jones, M.C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statist. Probab. Letters 9, 129–132.

    Article  Google Scholar 

  • Reiss, R.-D. (1981). Nonparametric estimation of smooth distribution functions. Scand. J. Statist. 8, 116–119.

    Google Scholar 

  • Reiss, R.-D. (1989). Approximate Distributions of order statistics (with Applications to Nonparametric Statistics). Springer Series in Statistics, Springer, New York.

    Book  Google Scholar 

  • Serfling, R.M. (1989). Approximation Theorems of Mathematical Statistics. Wiley, New York.

    Google Scholar 

  • Silverman, B.W. (1986). Density Estimation (for Statistics and Data Analysis). Chapman and Hall, London.

    Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9, 1187–1195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Falk, M. (1992). Bootstrapping the Sample Quantile: A Survey. In: Jöckel, KH., Rothe, G., Sendler, W. (eds) Bootstrapping and Related Techniques. Lecture Notes in Economics and Mathematical Systems, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48850-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48850-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55003-7

  • Online ISBN: 978-3-642-48850-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics