Molecular Orientation in High-Field High-Resolution NMR

Conference paper
Part of the NMR book series (NMR, volume 25)


At high magnetic fields a special feature of high-resolution NMR becomes important. It originates from the tendency of molecules, having anisotropic magnetic properties, to orient in the magnetic field of the spectrometer. As a result, anisotropic nuclear interactions are incompletely averaged and become manifest in the spectra of solutes in the mobile phases, which therefore may show additional fine structure. At currently available high fields, the effects of magnetic dipolar and electric quadrupolar spin couplings can be quite pronounced. NMR spectroscopists should therefore be aware of these alignment effects when interpreting their spectra. The study of magnetic field induced molecular orientation in NMR offers some interesting applications. Thus, information may be obtained about molecular susceptibility anisotropies and asymmetries, intermolecular interactions, aromaticity, solution conformations and quadrupole coupling constants. These possibilities in combination with the inherent simplicity of the technique make it an attractive tool for investigating properties and interactions of molecules in liquid solutions. It is expected that the use of supercritical fluid solvents and the future availability of higher magnetic fields in NMR, will greatly enlarge the range of possibilities of the method.


Dipolar Coupling Molecular Orientation Quadrupole Coupling Constant Line Splitting Alignment Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastiaan EW, MacLean C, van Zijl PCM, Bothner-By AA (1987) in: Webb GA (ed). Academic, London, pp 35–77 (Annual reports on NMR spectroscopy, vol 19)Google Scholar
  2. 2.
    van Zijl PCM, Ruessink BH, Bulthuis, J, MacLean C (1984) Acc. Chem. Res. 17: 172CrossRefGoogle Scholar
  3. 3.
    Bastiaan EW, Bulthuis J, MacLean C (1986) Magn. Reson. Chem. 24: 723CrossRefGoogle Scholar
  4. 4.
    Gayathri C, Bothner-By AA, van Zijl PCM, MacLean C (1982) Chem. Phys. Lett. 87: 192CrossRefGoogle Scholar
  5. 5.
    van Zijl PCM (1987) Trends Anal. Chem. 6: 23CrossRefGoogle Scholar
  6. 6.
    Skoglund CM (1987) Molecular orientation studies using high field NMR. Thesis, Carnegie-Mellon University, PittsburghGoogle Scholar
  7. 7.
    Lounila J, Jokisaari J (1982) Prog. NMR Spectrosc. 15: 249CrossRefGoogle Scholar
  8. 8.
    Lohman JAB, MacLean C (1978) Chem. Phys. 35: 269; Lohman JAB, MacLean C (1979) Chem. Phys. 43: 144Google Scholar
  9. 9.
    van ZijI PCM (1987) J. Magn. Reson. 75: 335CrossRefGoogle Scholar
  10. 10.
    Anet FAL (1986) J. Am. Chem. Soc. 108: 1354Google Scholar
  11. 11.
    Bothner-By AA, Domaille PJ, Gayathri C (1981) J. Am. Chem. Soc. 103: 5602Google Scholar
  12. 12.
    Bothner-By AA, Gayathri C, van Zijl PCM, MacLean C, Lai JJ, Smith KM (1985) Magn. Reson. Chem. 23: 935Google Scholar
  13. 13.
    Facchine KL, Staley SW, van Zijl PCM, Mishra PK, Bothner-By AA (1988) J. Am. Chem. Soc. 110: 4900Google Scholar
  14. 14.
    Lisicki MA, Mishra PK, Bothner-By AA, Lindsey JS (1988) J. Phys. Chem. 92: 3400CrossRefGoogle Scholar
  15. 15.
    van Zijl PCM, MacLean C, Skoglund CM, Bothner-By AA (1985) J. Magn. Reson. 65: 316CrossRefGoogle Scholar
  16. 16.
    Saupe A (1964) Z. Naturforsch. 19A: 161Google Scholar
  17. 17.
    Snyder LC (1965) J. Chem. Phys. 43: 4041CrossRefGoogle Scholar
  18. 18.
    van Zijl PCM, MacLean C, Bothner-By AA (1985) J. Chem. Phys. 83: 4410CrossRefGoogle Scholar
  19. 19.
    van Zijl PCM, MacLean C, Bothner-By AA (1985) J. Chem. Phys. 83: 4978CrossRefGoogle Scholar
  20. 20.
    Bothner-By AA, Dadok J, Mishra PK, van Zijl PCM (1987) J. Am. Chem. Soc. 109: 4180CrossRefGoogle Scholar
  21. 21.
    Abragam A (1985) The principles of nuclear magnetism. Clarendon, Oxford’’Google Scholar
  22. 22.
    Slichter CP (1980) Principles of magnetic resonance. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Diehl P, Khetrapal CL (1969) in: Diehl P, Fluck E, Kosfeld R (eds). Springer, Berlin Heidelberg New York, pp 1–95 (NMR basic principles and progress, vol 1)Google Scholar
  24. 24.
    Hilbers CW, MacLean C (1972) in: Diehl P, Fluck E, Kosfeld R (eds). Springer, Berlin Heidelberg New York, pp 1–52 (NMR basic principles and progress, vol 7)Google Scholar
  25. 25.
    van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Hilbers CW, MacLean C, Mandel M (1971) Physica 51: 246CrossRefGoogle Scholar
  27. 27.
    Buckingham AD (1967) Discuss. Faraday Soc. 43: 205CrossRefGoogle Scholar
  28. 28.
    Kirkwood JG (1939) J. Chem. Phys. 7: 919CrossRefGoogle Scholar
  29. 29.
    Ernst RR (1966) in: Waugh JS (ed). Academic, New York, pp 1–135 (Advances in magnetic resonance, vol 2)Google Scholar
  30. 30.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of NMR in one and two dimensions. Clarendon, OxfordGoogle Scholar
  31. 31.
    Loewenstein A (1983) in: Smith JAS (ed). Heyden, London, pp 53–82 (Advances in nuclear quadrupole resonance, vol 5)Google Scholar
  32. 32.
    Jacobsen JP, Pedersen EJ (1981) J. Magn. Reson. 44: 101Google Scholar
  33. 33.
    Bothner-By AA, Gayathri C, van Zijl PCM, MacLean C (1984) J. Magn. Reson. 56: 456CrossRefGoogle Scholar
  34. 34.
    Pearson GA (1987) J. Magn. Reson. 74: 541CrossRefGoogle Scholar
  35. 35.
    Lindon JC, Ferrige AG (1980) Prog. NMR Spectrosc. 14: 27CrossRefGoogle Scholar
  36. 36.
    Ferrige AG, Lindon JC (1978) J. Magn. Reson. 31: 337CrossRefGoogle Scholar
  37. 37.
    Dadok J (1988) To be published.Google Scholar
  38. 38.
    Traficante DD, Nemeth GA (1987) J. Magn. Reson. 71: 237CrossRefGoogle Scholar
  39. 39.
    Traficante DD, Ziessow D (1986) J. Magn. Reson. 66: 182CrossRefGoogle Scholar
  40. 40.
    Bothner-By AA, Dadok J (1987) J. Magn. Reson. 72: 540CrossRefGoogle Scholar
  41. 41.
    van ZijI PCM, Bothner-By AA (1988) J. Magn. Reson. 79: 439CrossRefGoogle Scholar
  42. 42.
    van Zijl PCM, Velthorst NH, MacLean C (1983) Mol. Phys. 49: 315CrossRefGoogle Scholar
  43. 43.
    van Zijl PCM, Kostermans GBM, MacLean C (1985) J. Am. Chem. Soc. 107: 2641Google Scholar
  44. 44.
    Domaille PJ (1980) J. Am. Chem. Soc. 102: 5392CrossRefGoogle Scholar
  45. 45.
    van Zijl PCM, van Wezel RP, MacLean C, Bothner-By AA (1985) J. Phys. Chem. 89: 204CrossRefGoogle Scholar
  46. 46.
    van Zijl PCM, Bastiaan EW, MacLean C, Bothner-By AA. To be publishedGoogle Scholar
  47. 47.
    Bastiaan EW, Wegman MAM, MacLean C (1987) Magn. Reson. Chem. 25: 817Google Scholar
  48. 48.
    Vander Hart DL, Flygare WH (1970) Mol. Phys. 18: 77CrossRefGoogle Scholar
  49. 49.
    Battaglia MR, Ritchie GLD (1977) J. Chem. Soc. Far. Trans. II 73: 209CrossRefGoogle Scholar
  50. 50.
    Vul’fson SG, Dianora OM (1984) Izv. Akad. Nauk. SSSR. Ser. Khim. 10: 2269 ( Chem. Abstracts 102: 45459n )Google Scholar
  51. 51.
    Ritchie GLD, Cooper MK, Calvert RL, Dennis GR, Philips L, Vrbancich J (1983) J. Am. Chem. Soc. 105: 5215Google Scholar
  52. 52.
    Mulay LN, Boudreaux EA (1976) Theory and application of molecular diamagnetism. Wiley, New YorkGoogle Scholar
  53. 53.
    Lindsey JS, Mauzerall DC (1982) J. Am. Chem. Soc. 104: 4498Google Scholar
  54. 54.
    Lindsey JS, Mauzerall DC, Linschitz H (1983) J. Am. Chem. Soc. 105: 6528Google Scholar
  55. 55.
    Appleman BR, Dailey BP (1974) in: Waugh JS (ed). Academic, New York, pp 231–320 (Advances in magnetic resonance, vol 7)Google Scholar
  56. 56.
    Ditchfield R (1972) in: Buckingham AD, Allen G (eds). Butterworths, London, pp 91–157 (International review of science: physical chemistry)Google Scholar
  57. 57.
    Beans JW (1932) Rev. Mod. Phys. 4: 133CrossRefGoogle Scholar
  58. 58.
    Flygare WH (1974) Chem. Rev. 74: 653CrossRefGoogle Scholar
  59. 59.
    Lonsdale K, Krishnan KS (1936) Proc. R. Soc. Lond. A156: 597Google Scholar
  60. 60.
    Alms GR, Bauer DR, Brauman JI, Pecora R (1973) J. Chem. Phys. 59: 5304; 59: 5310CrossRefGoogle Scholar
  61. 61.
    Patterson GD, Griffiths JE (1975) J. Chem. Phys. 63: 2406CrossRefGoogle Scholar
  62. 62.
    Lewis D, Peters D (1975) Facts and theories of aromaticity. MacMillan, LondonGoogle Scholar
  63. 63.
    van Zijl PCM, Jenneskens LW, Bastiaan EW, MacLean C, de Wolf WH, Bickelhaupt F (1986) J. Am. Chem. Soc. 108: 1415Google Scholar
  64. 64.
    Haddon RC, Haddon VR, Jackman LM (1971) Top. Curr. Chem. 16: 103Google Scholar
  65. 65.
    Godfrey R (1978) J. Chem. Soc. Perkin Trans. II 10: 1019CrossRefGoogle Scholar
  66. 66.
    Kidd KG, Kotowycz G, Schaefer T (1967) Can. J. Chem. 45: 2155CrossRefGoogle Scholar
  67. 67.
    Schmalz TG, Norris CL, Flygare WH (1973) J. Chem. Phys. 95: 7961Google Scholar
  68. 68.
    Robert JM, Evilia RF (1985) J. Am. Chem. Soc. 107: 3733Google Scholar
  69. 69.
    Lamb DM, Vander Velde DG, Jonas J (1987) J. Magn. Reson. 73: 345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1990

Authors and Affiliations

  1. 1.Department of Physical ChemistryFree UniversityAmsterdamThe Netherlands

Personalised recommendations