Concepts in Early Vision

  • B. Julesz
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 45)


Seventeen years of research of cyclopean perception — that is now called early vision — is reviewed particularly from a point of view to be of interest to physicists and engineers. Recent neurophysiological findings show neurons at the input stage to the cortex (layer IVB in VI) that fire for dynamic random-dot stereograms. So, global stereopsis is an early (bottom-up) process and as shown psychophysically is not influenced by semantic (top-down) processes. A new experiment, based on depth-from-shading processes, also shows that global stereopsis occurs first. Here is thus a model system where psychological phenomena [level-i] can be linked to neurophysiological events [level(i-1)]. Several cooperative and noncooperative models of global stereopsis are also discussed and since they are quite robust, only psychobiological evidence can decide which of them are likely to be used in human and monkey vision.


Binocular Disparity Early Vision Cooperative Phenomenon Binocular Fusion Stereoscopic Depth Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Julesz, “Synergetics, cooperative phenomena in multicomponent systems,” Proc. Symp. on Synergetics — Apr-May 1972, (Edited by H. Haken), pp. 194–206 (B. G. Teubner, Schloss Elmau, 1973).Google Scholar
  2. 2.
    B. Julesz, “Hierarchical systems in visual perception,” in Cooperative Phenomena, (Edited by H. Haken), pp. 229–246 (North-Holland Publishing Co., Amsterdam 1974).Google Scholar
  3. 3.
    B. Julesz, “Stereoscopic vision,” Vision Res., 26, 1601–1612 (1986).CrossRefGoogle Scholar
  4. 4.
    D. Marr, Vision (Freeman, San Francisco, CA, 1982).Google Scholar
  5. 5.
    P. Thompon, “Margaret Thatcher: a new illusion,” Perception, 9, 483–484 (1980).CrossRefGoogle Scholar
  6. 6.
    K. N. Ogle, Researches in Binocular Vision (Hafner, New York, 1964).Google Scholar
  7. 7.
    B. Julesz, “Binocular depth perception of computergenerated patterns,” Bell Syst. Tech. J., 39, 1125–1162 (1960).Google Scholar
  8. 8.
    B. Julesz and J. J. Chang, “Interaction between pools of binocular disparity detectors tuned to different disparities,” Biol. Cybernet. 22, 107–119 (1976).CrossRefGoogle Scholar
  9. 9.
    D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., Lond. 160, 106–154 (1962).Google Scholar
  10. 10.
    P. O. Bishop, “Neurophysiology of binocular single vision and stereopsis,” in Handbook of Sensory Physiology, (Edited by R. Jung), Vol. 7 (3A), pp. 256–305 (Springer, Berlin, 1973).Google Scholar
  11. 11.
    G. F. Poggio, “Processing of stereoscopic information in primate visual cortex,” in Dynamic Aspects of Neo-cortical Function, (Edited by G. M. Edelman, W. E. Gall and W.M. Cowan), pp. 613–635 (Wiley, New York, 1984).Google Scholar
  12. 12.
    G. F. Poggio, F. Gonzalez and F. Krause, “Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity,” J. Neuroscience, 8, 4531–4550 (1988).Google Scholar
  13. 13.
    G. F. Poggio and B. Fischer, “Binocular interaction and depth sensitivity of striate and prestriate cortical neurons rhesus monkeys,” J. Neurophysiol., 40, 1392–1405 (1977).Google Scholar
  14. 14.
    B. Julesz, Foundations of Cyclopean Perception (Univ. of Chicago Press, Chicago, IL, 1971).Google Scholar
  15. 15.
    B. Julesz, “Towards the automation of binocular depth perception (AUTOMAP-1),” Proc. IFIPS Conf., Munich (1962).Google Scholar
  16. 16.
    B. Julesz, “Binocular depth perception without familiarity cues,” Science, N.Y. 145, 356–362 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    B. Julesz, “Global stereopsis: cooperative phenomena in stereoscopic depth perception,” in Handbook of Sensory Physiology, Vol. VIII, Perception, pp. 215–256 (Springer, Berlin, 1978).Google Scholar
  18. 18.
    G. Sperling, “Binocular vision: A physical and neural theory, J. Am. Psychol. 83, 461–534 (1970).CrossRefGoogle Scholar
  19. 19.
    P. Dev, “Segmentation processes in visual perception: a cooperative neural model,” COINS Tech. Rep. 74C-5, Comput. Inf. Sci., Univ. of Mass. (1974).Google Scholar
  20. 20.
    J. I. Nelson, “Globality and stereoscopic fusion in binocular vision,” J. Theoret. Biol. 49, 1–88 (1975).CrossRefGoogle Scholar
  21. 21.
    D. Marr and T. Poggio, “Cooperative computation of stereo disparity,” Science, N.Y. 194, 283–287 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    S. B. Pollard, J. E. W. Mayhew and J. P. Frisby, “PMF: A stereo correspondence algorithm using a disparity gradient limit,” Perception, 14, 449–470 (1985).CrossRefGoogle Scholar
  23. 23.
    K. Prazdny, “Detection of binocular disparities,” Biol. Cybernet. 52, 93–99 (1985).zbMATHCrossRefGoogle Scholar
  24. 24.
    P. Burt and B. Julesz, “A disparity gradient limit for binocular fusion,” Science, N.Y. 208, 615–617 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    D. Fender and B. Julesz, “Extension of Panum’s fusional area in binocularly stabilized vision,” J. Opt. Soc. Am., 57, 819–830 (1967).ADSCrossRefGoogle Scholar
  26. 26.
    T. P. Piantanida, “Stereo hysteresis revisited,” Vision Res. 26, 431–437 (1986).CrossRefGoogle Scholar
  27. 27.
    D. Marr and T. Poggio, “A theory of human stereopsis,” Proc. R. Soc. B 204, 301–328 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    B. Julesz and J. E. Miller, “Independent spatial frequency tuned channels in binocular fusion and rivalry,” Perception, 4, 125–143 (1975).CrossRefGoogle Scholar
  29. 29.
    J. E. W. Mayhew and J. P. Frisby, “Convergent disparity discrimininations in narrow-band-filtered random-dot stereograms, Vision Res. 19, 63–71 (1979).CrossRefGoogle Scholar
  30. 30.
    P. Mowforth, J. E. W. Mayhew and J. P. Frisby, “Vergence eye movements made in response to spatial-frequencyfiltered random-dot stereograms,” Perception, 10, 299–304 (1981).CrossRefGoogle Scholar
  31. 31.
    W. E. L. Grimson, From Images to Surfaces (MIT Press, Cambridge, MA, 1981).Google Scholar
  32. 32.
    C. H. Anderson and D. C. Van Essen, “Shifter circuits: A computational strategy for dynamic aspects of visual processing,” Proc. of the Natl. Acad, of Sciences, USA, 84, 6297–6301 (1987).ADSCrossRefGoogle Scholar
  33. 33.
    A. van den Enden and H. Spekreijse, “Binocular depth reversals despite familiarity cues,” Science, 244, 959–961 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    M. A. Georgeson, “Random-dot stereograms of real objects: observations on stereo faces and moulds,” Perception, 8, 585–588 (1979).CrossRefGoogle Scholar
  35. 35.
    V. S. Ramachandran, “Perception of shape from shading,” Nature, 331, 163–166 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    O. Braddick, “A short-range process in apparent motion,” Vision Res., 14, 519–527 (1974).CrossRefGoogle Scholar
  37. 37.
    J. J. Chang and B. Julesz, “Displacement limits for spatial frequency filtered random-dot stereograms in apparent motion,” Vision Res., 23, 1379–1385 (1983).CrossRefGoogle Scholar
  38. 38.
    B. Julesz, “AI and early vision,” in Proc. of SPIE/SPSE Symposium on Electronic Imaging, Conference on Human Vision, Visual Processing, and Digital Display, January 15–20, 1989, Los Angeles, CA, (Edited by Bernice R. Rogowitz), Vol. 1077, (in press) (Bellingham, WA, SPIE, 1989).Google Scholar
  39. 39.
    B. J. A. Kröse and B. Julesz, “The control and speed of shifts of attention,” Vision Research (in press), (1989).Google Scholar
  40. 40.
    M. A. Mahowald and T. Delbrück, “Cooperative stereo matching using static and dynamic image features,” in Analog ELSI Implementation of Neuro Systems, (Edited by Carver Mead and M. Ismail), pp. 213–238 (Norwell, MA, Kluwer Academic Publishers, 1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • B. Julesz
    • 1
    • 2
  1. 1.Division of Biology216-76, CALTECHPasadenaUSA
  2. 2.Laboratory of Vision Research, Department of PsychologyRutgers UniversityNew BrunswickUSA

Personalised recommendations