Prolegomenon for a Holonomic Brain Theory

  • K. H. Pribram
Part of the Springer Series in Synergetics book series (SSSYN, volume 45)


“Before the connection of thought and brain can be explained, it must be stated in elementary form; and there are great difficulties about stating it. … Many would find relief at this point in celebrating the mystery of the unknowable and the “awe” which we should feel. … It may be constitutional infirmity, but I can take no comfort in such devices for making a luxury of intellectual defeat. … Better live on the ragged edge, better gnaw the file forever!” (James, 1950 pp. 177–179)


Spatial Frequency Visual Cortex Cortical Neuron Receptive Field Nerve Impulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann Machines. Cog. Sci., 9(2), pp. 147–169 (1985)Google Scholar
  2. [2]
    J.A. Anderson, J.W. Silverstein, S.A. Ritz, R.S. Jones, Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psych. Rev., 84, pp. 413–447 (1977)CrossRefGoogle Scholar
  3. [3]
    B.W. Andrews, D.A. Pollen, Relationship between spatial frequency selectivity and receptive field profile of simple cells. J. Physiol., 287, pp. 163–176 (1979)Google Scholar
  4. [4]
    W.R. Ashby, An introduction to cybernetics. London: Chapman & Hall, Ltd. (1956)zbMATHGoogle Scholar
  5. [5]
    W.R. Ashby, Design for brain: The origin of adaptive behaviour. (2nd. ed.) New York: John Wiley & Sons (196)Google Scholar
  6. [6]
    F. Attneave, Some informational aspects of visual perception. Psychol. Rev., 61, pp. 183–193 (1954)CrossRefGoogle Scholar
  7. [7]
    H.B. Barlow, Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1, pp. 371–394 (1972)CrossRefGoogle Scholar
  8. [8]
    T.W. Barrett, The cortex as interferometer: The transmission of amplitude, frequency and phase in the cerebral cortex. Neuropsychologia, 7, pp. 135–148Google Scholar
  9. [9]
    R. Bracewell, The Fourier transform and its applications. New York: McGraw Hill Books (1965)zbMATHGoogle Scholar
  10. [10]
    L. Brillouin, Science and information theory. New York: Academic Press (1962)zbMATHGoogle Scholar
  11. [11]
    T. Caelli, On the specification of coding principles for visual image processing. In P.C. Dodwell and T. Caelli (eds.), Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 153–184 (1984)Google Scholar
  12. [12]
    T. Caelli, & M. Hubner, On the efficient two-dimensional energy coding characteristics of spatial vision. Vision Research (in press) (1983)Google Scholar
  13. [13]
    T. Caelli, & B. Julez, Psychophysical evidence for global feature processing in visual texture discrimination. J. Opt. Soc. of Amer., 69, pp. 675–678 (1979)ADSCrossRefGoogle Scholar
  14. [14]
    F.W. Campbell, & J.G. Robson, Application of Fourier analysis to the visibility of gratings. J. Physiol., 197, pp. 551–566 (1968)Google Scholar
  15. [15]
    P. Cavanaugh, Two classes of holographic processes realizable in the neural realm. In T. Storer & D. Winter (eds.), Formal aspects of cognitive processes. Berlin: Springer-Verlag, pp. 14–40 (1975)CrossRefGoogle Scholar
  16. [16]
    P. Cavanaugh, Holographic and trace strength models of rehearsal effects in the item recognition task. Memory and cognition, 4, pp. 186–199 (1976)CrossRefGoogle Scholar
  17. [17]
    P. Cavanaugh, Image transforms in the visual system. In P.C. Dodwell & T.M. Caelli, (eds.), Figural Synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 185–218 (1984)Google Scholar
  18. [18]
    P. Cavanaugh, Local log polar frequency analysis in the striate cortex as a basis for size and orientation invariance. In D. Rose & V.G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons, pp. 85–95 (1985)Google Scholar
  19. [19]
    C. Cherry, On human communication. Cambridge, MA: MIT Press (1978)Google Scholar
  20. [20]
    F.H.C. Crick, & C. Asanuma, Certain aspects of the anatomy and physiology of the cerebral cortex. In J.L. McClelland & D.E. Rumelhart (eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. II: Psychological and biological models. Cambridge, MA: MIT Press (1986)Google Scholar
  21. [21]
    J.E. Cutting, Gibson, representation, and belief. Contem. Psychol., 30, pp. 186–188 (1985)Google Scholar
  22. [22]
    J.G. Daugman, Two-dimensional spatial analysis of cortical receptive field profiles. Vision Res., 20, pp. 847–856 (1980)CrossRefGoogle Scholar
  23. [23]
    J.G. Daugman, Spatial vision channels in the Fourier plan. Vision Res., 24, pp. 891–910 (1984)CrossRefGoogle Scholar
  24. [24]
    J.G. Daugman, Representational issues and local filter models of two-dimensional spatial visual encoding. In David Rose and Vernon G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons (1985)Google Scholar
  25. [25]
    J.G. Daugman, Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans, on Accoustics, Speech and Signal Processing, 36, No. 7, pp. 1169–1179 (1988)zbMATHCrossRefGoogle Scholar
  26. [26]
    R.L. DeValois, D.G. Albrecht, & L.G. Thorell, Cortical cells: Bar and Edge detectors, or spatial frequency filters? In S.J. Cool and E.L. Smith (eds.), Frontiers in visual science. New York: Springer-Verlag, pp. 544–556 (1978)Google Scholar
  27. [27]
    R.L. DeValois, & K.K. DeValois, Spatial vision. Ann. Rev. Psychol., 31, pp. 309–341 (1980)CrossRefGoogle Scholar
  28. [28]
    R.L. DeValois, & K.K. DeValois, Spatial vision (Oxford psychology series No. 14). New York, NY: Oxford University Press (1988)Google Scholar
  29. [29]
    P.A.M. Dirac, Is there an aether? Nature, 168, p. 906 (1951)MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    P.C. Dodwell, Local and global factors in figural synthesis. In P.C. Dodwell & T. Caelli (eds.). Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 219–248 (1984)Google Scholar
  31. [31]
    P.C. Dodwell, & T. Caelli, Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum (1984)Google Scholar
  32. [32]
    R.P. Feynman, R.B. Leighton, & M. Sands, The Feynman lectures on physics. Reading, PA: Addison-Wesley (1963)Google Scholar
  33. [33]
    J.L. Flanagan, Speech analysis, synthesis and perception (2nd ed.), p. 444. Berlin: Springer-Verlag (1972)Google Scholar
  34. [34]
    P. Fleschsig, Gehirn und Seele, 2nd ed., Leipzig: Verlag Veit & Co. (1896)Google Scholar
  35. [35]
    Freeman, Oscillatory potentials. In D.E. Sheer & K.H. Pribram (eds.), Attention, cognitive and brain processes and clinical applications. New York, NY: Academic Press (1989)Google Scholar
  36. [36]
    S. Freud, Project for a scientific psychology. Standard Edition, Vol. I, pp. 281–397 (1895/1966)Google Scholar
  37. [37]
    D. Gabor, Theory of communication. J. Inst. Elec. Engrs., 93, pp. 429–441 (1946)Google Scholar
  38. [38]
    D. Gabor, A new microscopic principle. Nature, 161, pp. 777–778 (1948)ADSCrossRefGoogle Scholar
  39. [39]
    W.R. Garner, Uncertainty and structure as psychological concepts. New York: John Wiley & Sons (1962)Google Scholar
  40. [40]
    L. Gatlin, Information theory and the living system. New York, NY: Columbia University Press (1972)Google Scholar
  41. [41]
    F.A. Geldard, Sensory saltation, metastability in the perceptual world. Hillsdale, NJ: Lawrence Erlbaum (1975)Google Scholar
  42. [42]
    A. Ginsburg, Psychological correlates of a model of the human visual system. Master’s thesis, Air Force Institute of Technology (1971)Google Scholar
  43. [43]
    A. Ginsburg, Visual information processing based on spatial filters constrained by biological data. Publication of the Aerospace Medical Research Lab., Wright-Patterson Air Force Base, Ohio (1978)Google Scholar
  44. [44]
    V.D. Glezer, Spatial and spatial frequency characteristics of receptive fields of the visual cortex and piecewise Fourier analysis. In D. Rose and V.G. Dobson (eds.), Models of the visual cortex. New York: John Wiley & Sons, Ltd., pp. 265–272 (1985)Google Scholar
  45. [45]
    V.D. Glezer, V.A. Ivanoff, T.A. Tscherbach, Investigation of complex and hypercomplex receptive fields of visual cortex of the cat as spatial frequency filters. Vision Research, 13, pp. 1875–1904 (1973)CrossRefGoogle Scholar
  46. [46]
    A. Goldscheider, Ueber die materiellen Veraenderungen bei der Assoziationsbildung. Neurologisches Zentralblatt, 25, p. 146 (1906)Google Scholar
  47. [47]
    C.G. Gross, Inferotemporal cortex and vision. In E. Stellar and J.M. Sprague (eds.), Progress in physiological psychology, 5, pp. 77–124. New York, NY: Academic Press (1973)Google Scholar
  48. [48]
    R.V.L. Hartley, Transmission of information. Bell System Tech. J., 7, p. 535 (1928)Google Scholar
  49. [49]
    D.O. Hebb, The organization of behavior, a neuro-psychological theory. Published in 1961 in New York: John Wiley & Sons (1949)Google Scholar
  50. [50]
    H. von Helmholta, Lehre von den Tonempfindungen. Braunschweig: Vieweg (1863)Google Scholar
  51. [51]
    G.E. Hinton, & J.A. Anderson, Parallel models of associative memory. Hillsdale, NJ: Lawrence Erlbaum Assoc. (1961)Google Scholar
  52. [52]
    G.E. Hinton, J.L. McClelland, D.E. Rumelhart, Distributed representations. In D.E. Rumelhart, & J.L. McClelland (eds.), Parallel distributed processing: Explorations in the microstructure of cognition, Vol. I: Foundations. Cambridge, MA: MIT Press (1986)Google Scholar
  53. [53]
    G.E. Hinton, T.J. Sejnowski, Learning and relearning in Boltzmann machines in parallel distributed processing. In D.E. Rumelhart & J.L. McClelland (eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. I: Foundations. Cambridge, MA: MIT Press (1986)Google Scholar
  54. [54]
    W.C. Hoffman, Figural synthesis by vectorfields: Geometric neuropsychology. In P.C. Dodwell & T. Caelli (eds.), Figural synthesis. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 249–282 (1984)Google Scholar
  55. [55]
    J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. PNAS, 79, pp. 2554–2558 (1982)MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    D.H. Hubel, & T.N. Wiesel, Receptive fields of single neurons in the cat’s striate cortex. J. Physiol., 148, pp. 574–591 (1959)Google Scholar
  57. [57]
    D.N. Hubel, & T.N. Wiesel, Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160, pp. 106–154 (1962)Google Scholar
  58. [58]
    W. James, Principles of psychology. Vol. I and II. New York: Dover Publications, Inc. (1950)Google Scholar
  59. [59]
    B. Julesz, Ks. S. Pennington, Equidistributed information mapping: An analogy to holograms and memory. J. Opt. Soc. Amer., 55, p. 605 (1965)Google Scholar
  60. [60]
    D.P. Kimble, The anatomy of memory. Palo Alto, CA: Science and Behavior Books (1965)Google Scholar
  61. [61]
    T. Kohonen, Correlation matrix memories. IEEE Trans. Computers, C., 21 pp. 353–359 (1972)zbMATHCrossRefGoogle Scholar
  62. [62]
    T. Kohonen, Associative memory: A system theoretic approach. Berlin: Springer-Verlag (1977)Google Scholar
  63. [63]
    T. Kohonen, & E. Oja, Technical comments, in Science, 234, p. 1227 (1987)Google Scholar
  64. [64]
    R.E. Kronauer, & Y.Y. Zeevi, Reorganization and diversification of signals in vision. IEEE Trans. Systems, Man and Cybernetics, 15, No. 1, pp. 91–101 (1985)Google Scholar
  65. [65]
    S.W. Kuffler, Discharge patterns and functional organizations of mammalian retina. J. Neurophysiol., 16, pp. 37–69 (1953)Google Scholar
  66. [66]
    S.W. Kuffler, & J.G. Nicholls, From neuron to brain. Sunderland, MA: Sinauer Assoc. (1976)Google Scholar
  67. [67]
    K. Kupfmuller, Ueber Einschwingungsvorgaenge in Wellenfiltern, Elek. Nachr.-Tech., 1, p. 141 (The bandwidth × time uncertainty) (1924)Google Scholar
  68. [68]
    K.S. Lashley, The problem of cerebral organization in vision. In Biological Symposia, Vol. VII, Visual Mechanisms. Lancaster: Jaques Cattell Press, pp. 301–332 (1942)Google Scholar
  69. [69]
    E.N. Leith, White-light holograms. Scientific American, 235 (4), p. 80 (1976)ADSCrossRefGoogle Scholar
  70. [70]
    J. Loeb, Comparative physiology of the brain and comparative psychology. New York: G.P. Putnam’s Sons, Science Series (1907)Google Scholar
  71. [71]
    A.R. Luria, The working brain. London, England: Penguin Books (1973)Google Scholar
  72. [72]
    D.M. MacKay, Information mechanism and meaning. Cambridge, MA: MIT Press (1969)Google Scholar
  73. [73]
    L. Maffei, & A. Fiorentini, The visual cortex as a spatial frequency analyzer. Vision Res., 13, pp. 1255–1267 (1973)CrossRefGoogle Scholar
  74. [74]
    H.R. Maturna, The neurophysiology of cognition. In P. Garvin (ed.), Cognition: A multiple view. New York, NY: Spartan Books (1969)Google Scholar
  75. [75]
    W.S. McCullough, & W. Pitts, Logical calculus of the ideas immenent in nervous activity. Bull. Math. Biophysics, 5, pp. 115–133 (1943)CrossRefGoogle Scholar
  76. [76]
    G.A. Miller, The magical number seven, plus or minus two, or some limits on our capacity for processing information. Psychol. Rev., 63, pp. 81–97 (1956)CrossRefGoogle Scholar
  77. [77]
    G.A. Miller, E.H. Galanter, & K.H. Pribram, Plans and the structure of behavior. New York: Holt, Rinehart & Winston (1960)CrossRefGoogle Scholar
  78. [78]
    M. Mishkin, Cortical visual areas and their interaction. In A.G. Karczmar and J.C. Eccles (eds.), The brain and human behavior. Berlin: Springer-Verlag, pp. 187–208 (1973)Google Scholar
  79. [79]
    J.A. Movshon, I.D. Thompson, & D.J. Tolhurst, Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J. Physiol., 283, pp. 53–77 (1978)Google Scholar
  80. [80]
    H. Nyquist, Certain factors affecting telegraph speed. Bell System Tech. J., p. 324 (1924)Google Scholar
  81. [81]
    G.S. Ohm, Ueber die Definition des Tones, nebst daran geknuepfter Theorie der Sirene und aehnlicher tonbildender Vorrichtungen. Ann. Physik, chem., 59, pp. 513–565 (1843)ADSCrossRefGoogle Scholar
  82. [82]
    S.E. Palmer, The psychology of perceptual organization: A transformational approach. In J. Beck, B. Hype, and A. Rosenfeld (eds.), Human machine vision, pp. 269–339. New York, NY: Academic Press (1983)Google Scholar
  83. [83]
    T. Poggio, & V. Torre, A new approach to synaptic interactions. In H. Palm (ed.), Approaches to complex systems. Berlin: Springer-Verlag (1980)Google Scholar
  84. [84]
    T. Poggio, V. Torre, & C. Koch, Computational vision and regularization theory. Nature, 317, pp. 314–319 (1985)ADSCrossRefGoogle Scholar
  85. [85]
    D.A. Pollen, Striate cortex and the reconstruction of visual space. In The Neurosciences Study Program III. Cambridge, MA: MIT Press (1973)Google Scholar
  86. [86]
    D.A. Pollen, J.R. Lee, J.H. Taylor, How does the striate cortex begin reconstruction of the visual world? Science, 173, pp. 74–77 (1971)ADSCrossRefGoogle Scholar
  87. [87]
    D.A. Pollen, S.E. Ronner, Spatial computation performed by simple and complex cells in the cat visual cortex. Exp. Brain Res., 41, pp. A14–A15 (1980)Google Scholar
  88. [88]
    K.H. Pribram, Some dimensions of remembering: Steps toward a neuropsychological model of memory. In J. Gaito (ed.), Macromolecules and behavior. New York, NY: Academic Press, pp. 165–187 (1966)Google Scholar
  89. [89]
    K.H. Pribram, Languages of the brain: Experimental paradoxes and principles in neuropsychology. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
  90. [90]
    K.H. Pribram, Review of “Chance and necessity” by J. Monod, in Perspectives in Biology and Medicine (1972)Google Scholar
  91. [91]
    K.H. Pribram, Toward a holonomic theory of perception. In Gestalttheorie in der modernen Psychologie. (Metzger Festschrift), pp. 161–184 (1975)Google Scholar
  92. [92]
    K.H. Pribram, The cognitive revolution and mind/brain issues. American Psychologist, 41, pp. 507–520 (1986)CrossRefGoogle Scholar
  93. [93]
    K.H. Pribram, & E.H. Carlton, Holonomic brain theory in imaging and object perception. Acta Psychologica, 63, pp. 175–210 (1986)CrossRefGoogle Scholar
  94. [94]
    K.H. Pribram, M. Nuwer, & R. Baron, The holographic hyperthesis of memory structure in brain function and perception. In R.C. Atkinson, D.H. Krantz, R.C. Luce and P. Suppes (eds.), Contemporary developments in mathematical psychology. San Francisco, Ca: W.H. Freeman & Co., pp. 416–467 (1974)Google Scholar
  95. [95]
    I. Prigogine, From being to becoming. San Francisco (1980)Google Scholar
  96. [96]
    I. Prigogine, & Stengers, order out of chaos. New York: Bantam Books (1984)Google Scholar
  97. [97]
    P. Rakic, Local circuit neurons. Cambridge, MA: MIT Press (1976)Google Scholar
  98. [98]
    J.G. Robson, Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In E.C. Carterette (ed.), Handbook of perception, Vol. V, Seeing. New York: Academic Press (1975)Google Scholar
  99. [99]
    I. Rock, The logic of perception. Cambridge, MA: MIT Press (1983)Google Scholar
  100. [100]
    B. Sakitt, & G.B. Barlow, A model for the economic cortical encoding of the visual image. Biolog. Cybernetics, 43, pp. 97–108 (1982)CrossRefGoogle Scholar
  101. [101]
    F.O. Schmitt, P. Dev, & B.H. Smith, Electronic processing of information by brain cells. Science, 193, pp. 114–120 (1976)ADSCrossRefGoogle Scholar
  102. [102]
    E.L. Schwartz, Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybernetics, 25, pp. 181–194 (1977)CrossRefGoogle Scholar
  103. [103]
    C.E. Shannon, & W. Weaver, The mathematical theory of communications. Urbana, IL: The University of Illinois Press (1949)Google Scholar
  104. [104]
    R. Shapley, & P. Lennie, Spatial frequency analysis in the visual system. Am. Rev. Neurosci., 8, pp. 546–583 (1985)Google Scholar
  105. [105]
    G.M. Shepherd, Neurobiology (2nd ed.). Oxford, England: Oxford University Press (1988)Google Scholar
  106. [106]
    D.N. Spinelli, O.C.C.A.M.: A computer model for a content addressable memory in the central nervous system. In K.H. Pribram and D.E. Broadbent (eds.), Biology of Memory. New York: Academic Press, pp. 293–306 (1970)Google Scholar
  107. [107]
    D.N. Spinelli, K.H. Pribram, & B. Bridgeman, Visual receptive field organization of single units in the visual cortex of monkey. Intern. J. Neuroscience, pp. 67–74 (1970)Google Scholar
  108. [108]
    D.N. Spinelli, A. Starr, & T. Barrett, Auditory specificity in unit recording from cat’s visual cortex. Exp. Neurol., 22, pp. 75–84 (1968)CrossRefGoogle Scholar
  109. [109]
    G. Stent, A pysiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA, 70, pp. 997–1001 (1973)ADSCrossRefGoogle Scholar
  110. [110]
    D.G. Stork, & H.R. Wilson, Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? J. Opt. Soc. of Amer. (1990)Google Scholar
  111. [111]
    J. Szentagothai, Functional anatomy of the visual centers as cues for pattern recognition concepts. In D. Chagas, R. Gattass & C. Gross (eds.), Pattern recognition mechanisms. Berlin: Springer-Verlag, pp. 39–52 (1985)Google Scholar
  112. [112]
    R.W. Thatcher, & E.R. John, Functional neuroscience, Vol. I. Hillsdale, NJ: Lawrence Erlbaum Assoc. (1977)Google Scholar
  113. [113]
    R.B. Tootell, M.S. Silverman, & R.L. DeValois, Soatial frequency columns in primary visual cortex. Science, 214, pp. 813–815 (1981)ADSCrossRefGoogle Scholar
  114. [114]
    P.J. Van Heerden, A new method of storing and retrieving information. Applied Optics, 2, pp. 387–392 (1963)ADSCrossRefGoogle Scholar
  115. [115]
    F. Varela, Principles of biological autonomy. New York: North-Holland/Elsevier (1979)Google Scholar
  116. [116]
    H. Von Foerster, Memory without record. In D.P. Kimble (ed.), The anatomy of memory. Palo Alto, CA: Science and Behavior Books, pp. 388–433 (1965)Google Scholar
  117. [117]
    A.B. Watson, & A.J. Ahumada, Jr., A model of human visual motion sensing. J. Opt. Soc. Am., A2, pp. 322–342 (1985)ADSCrossRefGoogle Scholar
  118. [118]
    N. Weisstein, The joy of Fourier analysis. In C.S. Harris (ed.), Visual coding and adaptability. Hillsdale, NJ: Lawrence Erlbaum Assoc, pp. 365–380 (1980)Google Scholar
  119. [119]
    N. Weisstein, & C.S. Harris, Masking and the unmasking of distributed representations in the visual system. In C.S. Harris (ed.), Visual coding and adaptability. Hillsdale, NJ: Lawrence Erlbaum Assoc., pp. 317–364 (1980)Google Scholar
  120. [120]
    M.L. Yevick, Holographic or Fourier logic pattern recognition. Oxford: Pergamon Press, pp. 197–213 (1975)Google Scholar
  121. [121]
    Y.Y. Zeevi, & J.G. Daugman, Some psychophysical aspects of visual processing of displayed information. Proc. Image II Conf., Phoenix, AZ (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • K. H. Pribram
    • 1
  1. 1.Department of PsychologyRadford UniversityRadfordUSA

Personalised recommendations