Skip to main content

Calculation of Power Deposition Patterns in Hyperthermia

  • Chapter
Thermal Dosimetry and Treatment Planning

Part of the book series: Clinical Thermology ((1289))

Abstract

Interest in simulating hyperthermia treatments has increased dramatically over the last several years. Such modeling is now viewed as a way of reaching better understandings of many facets of the treatment process. Not only is modeling being used to illuminate the parameters which lead to successful heating, but also to aid in the understanding of the physical mechanisms of power absorption and heat transfer. The simulation of hyperthermia treatments has been identified as a two-step procedure:

  • 1. compute the heating rate or power deposition pattern produced in the body by the heating source and

  • 2. compute the redistribution of energy due to thermal conduction and blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames WF (1977) Numerical methods for partial differential equations, 2nd edn. Academic. New York

    Google Scholar 

  2. Andersen JB (1985) Theoretical limitations on radiation into muscle tissue. Int J Hyperthermia 1:45 —55

    Google Scholar 

  3. Andersen JB (1987) Electromagnetic power deposition: in-homogeneous media, applicators, and phased arrays. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, Dordrecht, pp 159–210

    Google Scholar 

  4. Armitage DW, LeVeen HH, Pethig R (1983) Radiofrequency-induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models. Phys Med Biol 28: 31–42

    PubMed  CAS  Google Scholar 

  5. Barber FE, Griffice CP (1982) Power deposition for ultrasound hyperthermia. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 209–230

    Google Scholar 

  6. Bardati F (1982) Transient electromagnetic field in a lossy dielectric slab. Appl Sci Res 39:105 —113

    Google Scholar 

  7. Bardati F (1986) Models of electromagnetic heating and radiometric microwave sensing. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 327–382

    Google Scholar 

  8. Beer G, Meek JL (1981) Infinite domain elements. Int J Numer Methods Eng 17: 43–52

    Google Scholar 

  9. Bettess P (1977) Infinite elements. Int J Numer Methods Eng 11: 53–64

    Google Scholar 

  10. Bojarksi NN (1971) K-space formulation of the electromagnetic scattering problem. Technical Report Air Force Avionics Laboratory-TR-71–5, March, Wright-Patterson Air Force Base, Ohio, 45433

    Google Scholar 

  11. Bolomey JC, Durix CH, Lesselier D (1978) Time-domain integral equation approach for inhomogeneous and dispersive slab problems. IEEE Trans Antennas Propag 26: 658— 667

    Google Scholar 

  12. Borup DT, Gandhi OP (1984) Fast-Fourier-transform method for the calculation of SAR distributions in finely discretized models of biological tissues. IEEE Trans Microwave Theory Tech 32: 355–360

    Google Scholar 

  13. Borup DT, Sullivan DM, Gandhi OP (1987) Comparison of the FFT conjugate gradient method and the finite-difference time-domain method for the 2-D absorption problem. IEEE Trans Microwave Theory Tech 35: 383–395

    Google Scholar 

  14. Bottomley PA, Andrew ER (1978) RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23: 630–643

    PubMed  CAS  Google Scholar 

  15. Brebbia CA (1978) The boundary element method for engineers. Wiley, New York

    Google Scholar 

  16. Brebbia CA, Telles JF, Wrobel LC (1984) Boundary element techniques: theory and applications in engineering. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Brezovich IA, Young JH, Atkinson WJ, Wang MT (1982) Hyperthermia considerations for a conducting cylinder heated by an oscillating electric field applied parallel to the cylinder axis. Med Phys 9: 746–748

    PubMed  CAS  Google Scholar 

  18. Brezovich IA, Young JH, Wang MT (1983) Temperature distributions in hyperthermia by electromagnetic induction: a theoretical model for the thorax. Med Phys 10: 57–65

    PubMed  CAS  Google Scholar 

  19. Brezovich IA, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    PubMed  CAS  Google Scholar 

  20. Burden RI, Douglas JD, Reynolds AC (1981) Numerical analysis, 2nd edn. Prindle, Weber and Schmidt, Boston

    Google Scholar 

  21. Cain CA, Umemura SI (1986) Concentric-ring and sector-vortex phased-array applicators for ultrasound hyperthermia. IEEE Trans Microwave Theory Tech 34: 542–551

    Google Scholar 

  22. Cangellaris AC, Lin CC, Mai KK (1987) Pointed-matched time domain finite element methods for electromagnetic radiation and scattering. IEEE Trans Antennas Propag 35: 1160–1173

    Google Scholar 

  23. Chari MK, Silvester P (eds) (1979) Finite elements in electric and magnetic field problems. Wiley, New York

    Google Scholar 

  24. Chen KM (1980) Interaction of electromagnetic fields with biological bodies. In: Kong JA (ed) Research topics in electromagnetic theory. Wiley, New York

    Google Scholar 

  25. Chen ZP, Roemer RB, Miller W, Cetas TC (1988) Three-dimensional hyperthermia patient treatment planning program. Int J Hyperthermia (to be published )

    Google Scholar 

  26. Collins RJ (1973) Bandwidth reduction by automatic renumbering. Int J Numer Methods Eng 6: 345–356

    Google Scholar 

  27. DeWagter C (1986) Optimization of simulated two-dimensional temperature distributions induced by multiple electromagnetic applicators. IEEE Trans Microwave Theory Tech 34: 589–596

    Google Scholar 

  28. Dudley DG (1986) Error minimization and convergence in numerical methods. Electromagnetics 5: 89–97

    Google Scholar 

  29. Elliott RS, Harrison WA, Storm FK (1982) Hyperthermia: electromagnetic heating of deep-seated tumors. IEEE Trans Biomed Eng 29: 61–64

    PubMed  CAS  Google Scholar 

  30. Engleman MS, Sani RL, Gresho PM (1982) The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int J Numer Methods Fluids 2: 225–238

    Google Scholar 

  31. Engquist B, Majda A (1979) Radiation boundary conditions for acoustic and elastic wave calculations. Commun Pure Appl Math 32: 313–357

    Google Scholar 

  32. Finlayson BA (1972) Method of weighted residuals and variational principles. Academic, New York

    Google Scholar 

  33. Gandhi OP, Deford JF, Kanai H (1984) Impedance method for calculation of power deposition patterns in magnetically-induced hyperthermia. IEEE Trans Biomed Eng 31: 644–651

    PubMed  CAS  Google Scholar 

  34. Gee W, Lee SW, Bong NK, Cain CA, Mittra R, Magin RL (1984) Focused array hyperthermia: theory and experiment. IEEE Trans Biomed Eng 31: 38–46

    PubMed  CAS  Google Scholar 

  35. Gex-Fabry M, Landry J, Marceau N, Gayne S (1983) Prediction of temperature profiles in tumors and surrounding normal tissues during magnetic induction heating. IEEE Trans Biomed Eng 30: 271–277

    PubMed  CAS  Google Scholar 

  36. Gibbs FA (1984) Regional hyperthermia: a clinical appraisal of noninvasive deep heating methods. Cancer Res (Suppl) 44:4765 s - 4770 s

    Google Scholar 

  37. Gray WG (1984) On normal flow boundary conditions in finite element codes for two-dimensional shallow water flow. Int J Numer Methods Fluids 4: 99–104

    Google Scholar 

  38. Grifface CP, Seydell JA (1981) A spherical wave decomposition approach to ultrasonic field calculations. J Nondestructive Eval 2: 241–247

    Google Scholar 

  39. Guy AW, Chou CK, Luk KH (1986) 915 Mhz phased-array system for treating tumors in cylindrical structures. IEEE Trans Microwave Theory Tech 34: 502–507

    Google Scholar 

  40. Hagmann MJ (1987) Difficulty in using two-dimensional models for calculating the energy deposition in tissues during hyperthermia. Int J Hyperthermia 3: 475–476

    PubMed  CAS  Google Scholar 

  41. Hagmann MJ, Levin RL (1986) Aberrant heating: a problem in regional hyperthermia. IEEE Trans Biomed Eng 33: 405–411

    PubMed  CAS  Google Scholar 

  42. Hagmann MJ, Gandhi OP, Durney CH (1979) Numerical calculations of electromagnetic energy deposition for a realistic model of man. IEEE Trans Microwave Theory Tech 27: 804–809

    Google Scholar 

  43. Hagmann MJ, Massoudi H, Durney CH, Iskander MF (1985) Comments on limitations of the cubical block model of man in calculating SAR distributions. IEEE Trans Microwave Theory Tech 33: 347–348

    Google Scholar 

  44. Hagmann MJ, Tsai CT, Massoudi H, Durney CH, Iskander MF (1987) Comments on a procedure for calculating fields inside arbitrarily shaped inhomogeneous dielectric bodies using linear basis functions with the moment method. IEEE Trans Microwave Theory Tech 35: 785–786

    Google Scholar 

  45. Halac S, Roemer RB, Oleson JR, Cetas TC (1983) Magnetic induction heating of tissue: numerical evaluation of tumor temperature distributions. Int J Radiat Oncol Biol Phys 9: 881–891

    PubMed  CAS  Google Scholar 

  46. Hand JW, Cheetham JL, Hind AJ (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Trans Microwave Theory Tech 34: 484–489

    Google Scholar 

  47. Harrington RF (1986) Field computation by moment methods. Macmillian, New York

    Google Scholar 

  48. Hayes LJ, Diller KR, Pierce JA, Schick MR, Colvin DP (1985) Prediction of transient temperature fields and cumulative tissue destruction for radiofrequency heating of a tumor. Med Phys 12: 684–692

    PubMed  CAS  Google Scholar 

  49. Herman GC (1981) Scattering of transient acoustic waves by an inhomogeneous obstacle. J Acoust Soc Am 69: 909–915

    Google Scholar 

  50. Hessary MK, Chen KM (1984) EM local heating with HF electric fields IEEE Trans Microwave Theory Tech 32: 569–576

    Google Scholar 

  51. Hill SC, Christensen DA, Durney CH (1983) Power deposition patterns in magnetically-induced hyperthermia: a two-dimensional low-frequency numerical analysis. Int J Radiat Oncol Biol Phys 9: 893–904

    PubMed  CAS  Google Scholar 

  52. Hill SC, Durney CH, Christensen DA (1983) Numerical calculations of low-frequency TE fields in arbitrarily shaped inhomogeneous lossy dielectric cylinders. Radio Science 18: 328–336

    Google Scholar 

  53. Hood P (1976) Frontal solution program for unsymmetrical matrices. Int J Numer Methods Eng 10: 379–399

    Google Scholar 

  54. Hornbeck RW (1975) Numerical methods. Quantum, New York

    Google Scholar 

  55. Irons BM (1970) A frontal solution program for finite element analysis. Int J Numer Methods Eng 2: 5–32

    Google Scholar 

  56. Iskander MF (1982) Physical aspects and methods of hyperthermia production by RF currents and microwaves. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 151–191

    Google Scholar 

  57. Iskander MF, Turner PF, DuBow JB, Kao J (1982) Two-dimensional technique to calculate the EM power deposition pattern in the human body. J Microwave Power 17: 175–185

    CAS  Google Scholar 

  58. Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  59. Johnk, CTA (1988) Engineering electromagnetic fields and waves, 2nd edn. Wiley, New York

    Google Scholar 

  60. Kagawa Y, Takeuchi K, Yamabuchi T (1986) A simulation of ultrasonic hyperthermia using a finite element model. IEEE trans Ultrason Ferroelectrics and Frequency Control 33: 765–777

    CAS  Google Scholar 

  61. Kantorovich LV, Krylov VI (1959) Approximate methods of higher analysis, 4th edn. (translated by Bester CD). Wiley, New York

    Google Scholar 

  62. Kastner R, Mittra R (1983) A new stacked two-dimensional spectral iteration technique ( SIT) for analyzing microwave power deposition in biological media. IEEE Trans Microwave Theory Tech 31: 898–904

    Google Scholar 

  63. Lachat JC, Watson JO (1976) Effective numerical treatment of boundary integrals: a formulation for three-dimensional elastostatics. Int J Numer Methods Eng 10: 273–289

    Google Scholar 

  64. Lagendijk JJW (1983) A new coaxial TEM radiofrequency/microwave applicator for noninvasive deep-body hyperthermia. J Microwave Power 18: 367–375

    CAS  Google Scholar 

  65. Lau RWM, Sheppard RJ (1986) The modeling of biological systems in three dimensions using the time-domain finite-difference method. I. The implementation of the model. Phys Med Biol 31: 1247–1256

    Google Scholar 

  66. Lau RWM, Sheppard RJ, Howard G, Bleehen NM (1986) The modeling of biological systems in three dimensions using the time-domain finite-difference method: II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys Med Biol 31: 1257–1266

    Google Scholar 

  67. Lean MH, Wexler A (1985) Accurate numerical integration of singular boundary element kernels over boundaries with curvature. Int J Numer Methods Eng 21: 211–228

    Google Scholar 

  68. Lesselier D (1983) P waves transient scattering by 2-D penetrable targets: a direct solution. J Acoust Soc Am 74: 1274–1278

    Google Scholar 

  69. Lin CC (1985) Numerical modeling of two-dimensional time-domain electromagnetic scattering by underground in-homogeneities. PhD thesis, University of California, Berkeley

    Google Scholar 

  70. Lindman EL (1975) Free-space boundary conditions for the time-dependent wave equation. J Comput Phys 18: 66–78

    Google Scholar 

  71. Livesay DE, Chen KM (1974) Electromagnetic fields induced inside arbitrarily shaped biological bodies. IEEE Trans Biomed Eng 22: 1273–1280

    Google Scholar 

  72. Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7: 207–229

    Google Scholar 

  73. Lynch DR, Paulsen KP, Strohbehn JW (1985) Finite dement solution of Maxwell’s equations for hyperthermia treatment planning. J Comput Phys 58: 246–269

    Google Scholar 

  74. Lynch DR, Paulsen KD, Strohbehn JW (1986) Hybrid dement method for unbounded electromagnetic problems in hyperthermia. Int J Numer Methods Eng 23: 1915–1937

    Google Scholar 

  75. Lynch DR, Paulsen KD, Sullivan J, Strohbehn JW (1988) Hyperthermia analysis on finite elements. Proceedings of the ninth annual conference of the IEEE Engineering in Medicine and Biology Society, pp 1293–1295

    Google Scholar 

  76. Mansur WJ, Brebbia CA (1982) Numerical implementation of the boundary element method for two-dimensional transient scalar wave propagation problems. Appl Math Modelling 6: 299–306

    Google Scholar 

  77. Mansur WJ, Brebbia CA (1982) Formulation of the boundary element method for transient problems governed by the scalar wave equation. Appl Math Modelling 6: 307–311

    Google Scholar 

  78. Matloubieh AY, Roemer RB, Cetas TC (1984) Numerical simulation of magnetic induction heating of tumors with ferromagnetic seed implants. IEEE Trans Biomed Eng 31: 227–234

    PubMed  CAS  Google Scholar 

  79. Mittra R (ed) (1973) Computer techniques for electromagnetics. Pergamon, Oxford

    Google Scholar 

  80. Mittra R (ed) (1975) Numerical and asymptotic techniques in electromagnetics. Springer, Berlin Heidelberg New York (Topics in applied physics, vol 3 )

    Google Scholar 

  81. Moore J, Pizer R (eds) (1984) Moment methods in electromagnetics. Research Studies, Letchworth

    Google Scholar 

  82. Mur G (1981) Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans Electromagn Compat 23: 1073–1077

    Google Scholar 

  83. Nath B (1980) The w-plane finite element method for the solution of scalar field problems is two-dimensions. Int J Numer Methods Eng 15: 361–379

    Google Scholar 

  84. Nisson P, Larsson T, Persson B (1985) Absorbed power distributions from two tilted waveguide applicators. Int J Hyperthermia 1: 29–44

    Google Scholar 

  85. Oleson JR (1982) Hyperthermia by magnetic induction: I. Physical characteristics of the technique. Int J Radiat Oncol Biol Phys 8: 1747–1756

    PubMed  CAS  Google Scholar 

  86. Oleson JR (1987) What is regional hyperthermia? Int J Hyperthermia 3: 281–282

    PubMed  CAS  Google Scholar 

  87. Oleson JR, Heusinkveld RS, Manning MR (1983) Hyperthermia by magnetic induction. II. Clinical experience with concentric electrodes. Int J Radiat Oncol Biol Phys 9: 549–556

    Google Scholar 

  88. Paulsen KD, Strohbehn JW, Hill SC, Lynch DR, Kennedy FE (1984) Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional axiasymmetric inhomogeneous patient model. Int J Radiat Oncol Biol Phys 10: 1095–1107

    PubMed  CAS  Google Scholar 

  89. Paulsen KD, Strohbehn JW, Lynch DR (1985) Comparative theoretical performance of two types of regional hyperthermia systems. Int J Radiat Oncol Biol Phys 11: 16591671

    Google Scholar 

  90. Paulsen KD, Strohbehn JW, Lynch DR (1988) Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man. IEEE Trans Biomed Eng 35: 36–45

    PubMed  CAS  Google Scholar 

  91. Paulsen KD, Lynch DR, Strohbehn JW (1988) Three-dimen ional finite boundary and hybrid element solutions of the of the Maxwell equations for lossy dielectric media. IEEE Trans Microwave Theory Tech 36: 682–693

    Google Scholar 

  92. Reynolds AC (1978) Boundary conditions for the numerical solution of wave propagation problems. Geophys 43: 1099–1110

    Google Scholar 

  93. Richmond JH (1965) Scattering by a dielectric cylinder of arbitrary cross-section shape. IEEE Trans Antennas Propag 13: 334–341

    Google Scholar 

  94. Rine G, Dewhirst MW, Samulski TV, Wallen A (1987) Modelling of SAR values in tissue due to slab loaded waveguide applicators. Proceedings of the ninth annual conference of the IEEE Engineering in Medicine and Biology Society, pp 1000–1001

    Google Scholar 

  95. Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Cancer Res 44: 4788s - 4798s

    PubMed  CAS  Google Scholar 

  96. Roemer RB, Cetas TC, Oleson JR, Halac S, Matloubieh AY (1984) Comparative evaluation of hyperthermia heating modalities. I. Numerical analysis of thermal dosimetry bracketing cases. Radiat Res 100: 450–472

    Google Scholar 

  97. Roemer RB, Cetas CT, Oleson JR, Halac S, Matloubieh AY (1984) Comparative evaluation of hyperthermia heating modalities. II. Application of the acceptable power range technique. Radiat Res 100: 473–486

    Google Scholar 

  98. Roemer RB, Swindell W, Clegg ST, Kress RL (1984) Simulation of focused scanned ultrasonic heating of deep-seated tumors: effects of blood perfusion. IEEE Trans Sonics Ultrason 31: 457–466

    Google Scholar 

  99. Sapozink MD, Gibbs FA, Gates KS, Stewart JR (1984) Regional hyperthermia in the treatment of clinically advanced deep-seated malignancy: results of a pilot study employing an annular array applicator. Int J Radiai Oncol Biol Phys 10: 775–786

    CAS  Google Scholar 

  100. Sapozink MD, Gibbs FA, Thomson JW, Eltringham JR, Stewart JR (1985) A comparison of deep regional hyperthermia from an annular array and a concentric coil in the same patients. Int J Radiat Oncol Biol Phys 11: 179–190

    PubMed  CAS  Google Scholar 

  101. Schaubert DH, Wilton DR, Glisson AW (1984) A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. IEEE Trans Antennas Propag 32: 77–85

    Google Scholar 

  102. Schwan HP, Foster KR (1980) RF-field interactions with biological systems: electrical properties and biophysical mechanism. Proc IEEE 68: 104–113

    Google Scholar 

  103. Shaw RP (1975) An outer boundary integral equation applied to transient wave scattering in an inhomogeneous medium. J Appl Mech 42: 147–152

    Google Scholar 

  104. Shen LC, Kong JA (1987) Applied electromagnetism, 2nd edn. Prindle, Weber, and Schmidt, Boston

    Google Scholar 

  105. Shen SF (1975) An aerodynamist looks at the finite element method. In: Gallagher RH et al. (eds) Finite elements in fluids, vol 2. Wiley, New York

    Google Scholar 

  106. Silvester PP, Ferrari RL (1983) Finite elements for electrical engineers. Cambridge University Press, Cambridge

    Google Scholar 

  107. Silvester PP, Lowther DA, Carptenter CJ, Wyatt EA (1977) Exterior finite elements for 2D field problems with open boundaries. Proc IEEE 124: 1267–1270

    Google Scholar 

  108. Sloan SW, Randolph MF (1983) Automatic element reordering for finite element analysis with frontal solution schemes. Int J Numer Methods Eng 19: 1153–1181

    Google Scholar 

  109. Storm FK, Harrison WH, Elliott RS, Hatzitheofilous C, Morton DL (1979) Human hyperthermia therapy: relation between tumor type and capacity to induce hyperthermia by radiofrequency. Am J Surg 138: 170–174

    PubMed  CAS  Google Scholar 

  110. Storm FK, Elliott RS, Harrison WH, Morton DL (1982) Clinical RF hyperthermia by magnetic-loop induction: a new approach to human cancer therapy. IEEE Trans Microwave Theory Tech 30: 1149–1158

    Google Scholar 

  111. Storm FK, Harrison WH, Elliott RS, Silberman AW, Morton DL (1982) Thermal distribution of magnetic-loop induction hyperthermia in phantoms and animals: effect of the living state and velocity of heating. Int J Radiat Oncol Biol Phys 8: 865–871

    PubMed  CAS  Google Scholar 

  112. Storm FK et al. (1985) Magnetic induction hyperthermia: results of a 5 year multi-institutional national cooperative trial in advanced cancer patients. Cancer 55: 2677–2687

    PubMed  CAS  Google Scholar 

  113. Strang WG, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  114. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, London

    Google Scholar 

  115. Strohbehn JW (1982) Theoretical temperature distributions for solenodial-type hyperthermia systems. Med Phys 9: 673–682

    PubMed  CAS  Google Scholar 

  116. Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    PubMed  CAS  Google Scholar 

  117. Strohbehn JW, Douple EB (1984) Hyperthermia and cancer therapy: a review of biomedical engineering contributions and challenges. IEEE Trans Biomed Eng 31: 779–787

    PubMed  CAS  Google Scholar 

  118. Strohbehn JW, Roemer RB (1984) A survey of computer simulations of hyperthermia treatments. IEEE Trans Biomed Eng 31: 136–149

    PubMed  CAS  Google Scholar 

  119. Strohbehn JW, Mechling JA (1986) Interstitial techniques for clinical hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 210–287

    Google Scholar 

  120. Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of finite element methods in computerized thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 383–451

    Google Scholar 

  121. Sullivan DM, Borup DT, Gandhi OP (1987) Use of the finite-difference time-domain method in calculating EM absorption in human tissues. IEEE Trans Biomed Eng 34: 148–157

    PubMed  CAS  Google Scholar 

  122. Sultran MF, Mittra R (1985) An iterative moment method for analyzing the electromagnetic field distribution inside homogeneous lossy dielectric objects. IEEE Trans Microwave Theory Tech 33: 163–168

    Google Scholar 

  123. Swindell W (1986) Ultrasonic hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies, Letchworth, pp 288–326

    Google Scholar 

  124. Taflove A (1980) Application of the finite difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans Electromagn Compat 22: 191–202

    Google Scholar 

  125. Taflove A, Brodwin ME (1975) Numerical solution to steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans Microwave Theory Tech 23: 623–630

    Google Scholar 

  126. Telles JCF (1987) A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer Methods Eng 24: 959–973

    Google Scholar 

  127. Theocaris PS, Ioakimidis NI, Kazantzakis JG (1980) On numerical evaluation of two-dimensional principle value integrals. Int J Numer Methods Eng 15: 629–634

    Google Scholar 

  128. Tijhius AG (1984) Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems. Radio Science 19: 1311–1317

    Google Scholar 

  129. Trembly BS (1985) The effects of driving frequency and ntenna length on power deposition within a microwave array used for hyperthermia. IEEE Trans Biomed Eng 32: 152–157

    PubMed  CAS  Google Scholar 

  130. Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of SAR patterns with an interstitial microwave array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Google Scholar 

  131. Tsai CT, Massoudi H, Durney CH, Iskander MF (1986) A procedure for calculating fields inside arbitrary shaped in-homogeneous dielectric bodies using linear basis functions with the moment method. IEEE Trans Microwave Theory Tech 34: 1131–1139

    Google Scholar 

  132. Turner PF (1984) Hyperthermia and inhomogeneous tissue effects using an annular phased array. IEEE Trans Microwave Theory Tech 32: 874–882

    Google Scholar 

  133. Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31: 106–114

    PubMed  CAS  Google Scholar 

  134. Turner PF (1986) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory Tech 34: 572–578

    Google Scholar 

  135. Turner PF, Kumar L (1982) Computer solution for applicator heating patterns. Natl Cancer Inst Monogr 61: 521–523

    Google Scholar 

  136. Van Den Berg PM, DeHoop AT, Segal A, Praagman N (1983) A computational model of electromagnetic heating of biological tissue with application to hyperthermic cancer therapy. IEEE Trans Biomed Eng 30: 797–805

    PubMed  Google Scholar 

  137. Visser AG, Van Rhoon GV, Van Den Berg PM, Reinhold HS (1987) Evaluation of calculated temperature distributions for a 27 MHz ridged waveguide used in localized deep hyperthermia. Int J Hyperthermia 3: 245–256

    PubMed  CAS  Google Scholar 

  138. Wait JR (1985) Focused heating in cylindrical targets. Part I. IEEE Trans Microwave Theory Tech 33: 647–654

    Google Scholar 

  139. Wait JR, Lumori M (1986) Focused heating in cylindrical targets. Part II. IEEE Trans Microwave Theory Tech 34: 357–359

    Google Scholar 

  140. Wong TZ, Strohbehn JW, Jones KM, Mechling JA, Trembly BS (1986) SAR patterns from an interstitial microwave antenna array hyperthermia system. IEEE Trans Microwave Theory Tech 34: 560–567

    Google Scholar 

  141. Yee KS (1966) Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14: 302–307

    Google Scholar 

  142. Young JH, Wang MT, Brezovich IA (1980) Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. Electron Lett 16: 358–359

    Google Scholar 

  143. Zienkiewicz OC (1977) The finite element method. McGraw-Hill, London

    Google Scholar 

  144. Zienkiewicz OC, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19:393 —404

    Google Scholar 

  145. Ziolkowski RW, Madsen NK, Carpenter RC (1983) Three-dimensional computer modeling of electromagnetic fields: a global lookback lattice truncation scheme. J Comput Phys 50: 360–408

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paulsen, K.D. (1990). Calculation of Power Deposition Patterns in Hyperthermia. In: Gautherie, M. (eds) Thermal Dosimetry and Treatment Planning. Clinical Thermology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48712-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48712-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48714-9

  • Online ISBN: 978-3-642-48712-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics