Skip to main content
  • 387 Accesses

Abstract

Machine tools are the most fundamental and essential machines in industrial manufacturing shops. Performance of machine tools in terms of machine accuracy (high precision) and machine productivity (high working efficiency) greatly depends on the static rigidity and dynamic characteristics of the machine tools [1–3]. Therefore, until now the design optimization of machine-tool structures has been studied intensively [4–8]. Small static and vibrational displacements are mainly evaluated for realizing high machine accuracy. Far smaller displacements. than those existing at the state of machine failure (breakdown), at which the stress is usually known only approximately, must be considered for evaluating the performance of machine tools. That is, the design of machine tools is a displacement criterion design problem. The static rigidity and dynamic characteristics also depend on the design of the machine structures which are composed of structural members and machine elements as well as of joints connecting the structural members and machine elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tobias. S.A.: Machine Tool Vibration. London: Blackie, 1965

    Google Scholar 

  2. Koenigsberger, F.: Tlusty. J.: Machine Tool Structures. Vol. 1. Oxford: Pergamon Press. 1970

    Google Scholar 

  3. Weck, M.: Teipel,K.: Dynamisches Verhalten Spanender Werkzeugmaschinen. Berlin: Springer-Verlag. 1977

    Google Scholar 

  4. Reddy, C.P.; Rao, S.S.: Automated Optimum Design of Machine-Tool Structures foi- Static Rigidity. Natural Frequencies and Regenerative Chatter Stability. ASME Journal of Engineering for Industry. Vol. 100, No. 2 (1978) 137–146

    Article  Google Scholar 

  5. Rao, S.S.; Grandhi, R.V.: Optimum Design of Radial Drilling Machine Structure to Satisfy Static Rigidity and Natural Frequency Requirements. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 105, No. 2 (1983) 236–241

    Article  Google Scholar 

  6. Reddy, V.R.; Sharan, A.M.: Design of Machine Tool Spindles Based on Transient Analysis. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 107, No. 3 (1985) 346–352

    Article  Google Scholar 

  7. Yoshimura, M.; Hamada, T.; Yura, K.; Hitomi, K.: Design Optimization of Machine-Tool Structures With Respect to Dynamic Characteristics. ASME Journal of Mechanisms. Transmissions, and Automation in Design. Vol. 105, No. 1 (1983) 88–96

    Article  Google Scholar 

  8. Yoshimura, M.; Takeuchi, Y.; Hitomi, K.: Design Optimization of Machine-Tool Structures Considering Manufacturing Cost, Accuracy, and Productivity. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 106, No. 4 (1984) 531–537

    Article  Google Scholar 

  9. Yoshimura, M.: Evaluation of Forced and Self-Excited Vibrations at the Design Stage of Machine-Tool Structures. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 108, No. 3 (1986) 323–329

    Article  Google Scholar 

  10. Merritt, H.E.: Theory of Self-Excited Machine-Tool Chatter. ASME Journal of Engineering for Industry. Vol. 87, No. 4 (1965) 447–454

    Article  Google Scholar 

  11. Yoshimura, M.: Design Optimization of Machine-Tool Dynamics Based on Clarification of Competitive-Cooperative Relationships Between Characteristics. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 109, No. 1 (1987) 143–150

    Article  Google Scholar 

  12. Kuhn. H.W.; Tucker, A.W.: Nonlinear Programming. Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability (1951) 481–492

    Google Scholar 

  13. Yoshimura, M.: Hamada, T.; Yura, K.: Hitomi, K.: Multiobjective Design Optimization of Machine-Tool Spindles. ASME Journal of Mechanisms, Transmissions. and Automation in Design. Vol. 106. No. 1 (1984) 46–53

    Article  Google Scholar 

  14. Nelder, J.A.: Mead, R.: A Simplex Method for Function Minimization. Computer Journal. Vol. 7. (1965) 308–313

    MATH  Google Scholar 

  15. Yoshimura. M.: Decision Making in the Choosing of New Materials from the Standpoint of Machine Structural Dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, No. 1 (1989) 110–116

    Article  Google Scholar 

  16. Yoshimura, M.; Itani, K.; Hitomi. K.: Integrated Optimization of Machine Product Design and Process Design. International Journal of Production Research, Vol. 27. No. 8 (1989) 1241–1256

    Article  MATH  Google Scholar 

  17. Barthelemy, J.-F.,M: Engineering Application of Heuristic Multilevel Optimization Methods. In: Eschenauer, H.; Thierauf, G.: “Discretization Methods and Structural Optimization–Procedures and Applications.” Berlin, Heidelberg. New York. London, Paris, Tokyo: Springer-Verlag (1989) 24–31

    Chapter  Google Scholar 

  18. Bremicker, M.; Eschenauer, H.; Post, P.: On a Decomposition Technique within the Scope of a Design Optimization Process. In: Eschenauer, H.; Thierauf, G.: “Discretization Methods and Structural Optimization–Procedures and Applications.” Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer (1989) 87–94

    Chapter  Google Scholar 

  19. Giebner, E.: Bearing Arrangement Design for Machine Tool Spindles, Ball Bearing Journal 216 (1983) 1–13

    Google Scholar 

  20. Himmelblau, D.M.: Applied Nonlinear Programming. New York: McGraw-Hill Book Co. 1972

    MATH  Google Scholar 

  21. Johnson, R.C.; Benson, R.C.: A Basic Two-Stage Decomposition Strategy for Design Optimization. Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106 (1984) 380–386

    Article  Google Scholar 

  22. Johnson, R.C.; Benson, R.C.: A Multistage Decomposition Strategy for Design Optimization. Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106 (1984) 387–393

    Article  Google Scholar 

  23. Osyczka, A.: Computer Aided Multicriterion Optimization System (CAMOS). In: Eschenauer, H.; Thierauf, G.: “Discretization Methods and Structural Optimization–Procedures and Applications”. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag (1989) 263–270

    Chapter  Google Scholar 

  24. Osyczka, A.: Multicriterion Optimization in Engineering with FORTRAN Programs. Chichester: John Wiley & Sons 1984

    Google Scholar 

  25. Reimers, U.: A Method for Solving the Decentralized Hierarchical Multiple Objective Decision Making Problem. Manuskripte aus dem Institut für Betriebswirtschaftslehre der Universität Kiel, No. 154, 1984

    Google Scholar 

  26. Shimizu, K.; Aiyoshi,E.: Hierarchical Multi-Objective Decision Systems for General Resource Allocation Problems. Journal of Optimization Theory and Application, Vol. 35, No. 4, 1981

    Article  MathSciNet  Google Scholar 

  27. Szimanowicz, M.A.; Kundraszow, L.W.: Sistiema Program dlia Rasczeta Nagruzocznych Charakteristik Szpindielia, Ustanowliennogo w Gidrostaticzeskich Oporach, Stankii Intstrumienty, No. 3 (1985) 9–12

    Google Scholar 

  28. Waleckx. J.: Best Compromise Stiffness/Speed for Precision Machine Tool Spindles, Ball Bearing Journal, 208 (1981) 11–21

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Yoshimura, M., Montusiewicz, J., Osyczka, A., Zamorski, J. (1990). Machine Tool Design. In: Eschenauer, H., Koski, J., Osyczka, A. (eds) Multicriteria Design Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48697-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48697-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48699-9

  • Online ISBN: 978-3-642-48697-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics