Skip to main content

Interactive Multicriteria Optimization in Design Process

  • Chapter
Multicriteria Design Optimization

Abstract

In this chapter MO-procedures treated in Chapter 2 will be developed into interactive procedures which integrate the decision making process into optimization algorithms. The interactive procedures provide the Decision Maker (DM) with a selection of Pareto-optimal solutions which to some extent are representative for the whole set of available solutions. This procedure consists of a sequence of decision and computation phases. In the decision phase the DM decides whether or not a solution is optimal with respect to his implicit preferences. In the latter case he must give some information about the direction in which he expects to obtain a better solution. In the computation phase the new solution is generated for the next decision phase. The procedure is stopped when the optimal solution which reflects the DM’s preferences is found. Such a dialogue does not only improve the implicit preferences of the decision maker but also supports and simplifies the process of decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benayoun, R.; Roy, B.; Sussman, B.: ELECTRE: Une Methode pour Guider le Choix en Presence de Vue Multiple. SEMA (Metra International), Direction Scientifique, Note de Travail No. 49, Paris, June 1966

    Google Scholar 

  2. Benayoun, R.; de Montgolfier. J.; Tergny, J.; Laritchev, O.: Linear Programming with Multiple Objective Functions: STEP Method (STEM). Mathematical Programming, Vol. 1 (1971) 366–375

    Article  MathSciNet  MATH  Google Scholar 

  3. Geoffrion, A.M.; Dyer, J.S.; Feinberg, A.: An Interactive Approach for Multicriterion Optimization, with an Application to the Operation of an Academic Department. Management Science, Vol. 19, No. 4 (1972) 357–368

    Article  MATH  Google Scholar 

  4. Fandel, G.: Optimale Entscheidung bei mehrfacher Zielsetzung. Berlin, Heidelberg, New York: Springer Verlag 1972

    Book  Google Scholar 

  5. Zionts, S.; Wallenius, J.: An Interactive Programming Method for Solving the Multiple Criteria Problem. Management Science, Vol. 22, No. 6 (1976) 652–663

    Article  MATH  Google Scholar 

  6. Steuer, R.E.: An Interactive Multiple Objective Programming Procedure. In: Starr, M.K.; Zeleny, M.: Studies in Management Science, North Holland Pub. Comp., Amsterdam, Vol. 6 (1977)

    Google Scholar 

  7. Dupre, R.; Huckert, K.; Jahn, J.: Lösung linearer Vektormaximumprobleme durch das STEM-Verfahren. In: Späth. H. (ed.): Ausgewählte Operations Research Software in Fortran. München: Oldenburg Verlag 1979

    Google Scholar 

  8. Guddat, J.; Guerra-Vasquez, F.; Tammer, K.; Wendler, K.: Multi-objective and Stochastic Optimization Based on Parametric Optimization. Berlin: Akademie-Verlag 1985

    Google Scholar 

  9. Lecture Notes in Economics and Mathematical Systems: Proceedings of the International Conferences on Multiple-Criteria Decision Making. Berlin, Heidelberg, New York: Springer Verlag, annual publications

    Google Scholar 

  10. Hwang, C.-L.; Masud, A.S.M.: Multiple Objective Decision Making Methods and Applications. A State of Art Survey. Lecture Notes in Economics and Mathematical Systems. Berlin, Heidelberg, New York: Springer Verlag 1979

    Google Scholar 

  11. Zeleny, M.: Multiple Criteria Decision Making. New York: McGraw-Hill Book Comp. 1979

    Google Scholar 

  12. Goicoechea, A.; Hansen, D.R.; Duckstein, L.: Multiobjective Decision Analysis with Engineering and Business Applications. New York, Toronto: John Wiley & Sons 1982

    Google Scholar 

  13. Szidarovszky, F.; Gershon, M.E.; Duckstein, L.: Techniques for Multiobjective Decision Making in Systems Management. Amsterdam, Oxford, New York: Elsevier Pub. Comp. 1986

    Google Scholar 

  14. Sawaragi, Y.; Nakayma, H.; Tanino, T.: Theory of Multiobjective Optimization. New York, London: Academic Press 1985

    Google Scholar 

  15. Isermann, H.: Strukturierung von Entscheidungsprozessen bei mehrfacher Zielsetzung. OR Spektrum, Vol. 1 (1979) 3–26

    Article  MATH  Google Scholar 

  16. Koski, J.: Multicriteria Truss Optimization. In: Stadler, W.: Multicriteria Optimization in Engineering and in the Sciences. New York, London: Plenum Press 1988

    Google Scholar 

  17. Carmichael, D.G.: Computation of Pareto Optima in Structural Design. Intern. Journal of Numerical Methods in Engineering, Vol. 15 (1980) 925–952

    Article  MATH  Google Scholar 

  18. Brosowski, B.: Application of Parametric Programming to the Optimal Design of Stiffened Plates. Int. Series of Num. Mathematics. Vol. 72 (1984) 47–69

    MathSciNet  Google Scholar 

  19. Diaz, A.: Interactive Solution to Multiobjective Optimization Problems. Int. Journal of Numerical Methods in Engineering, Vol. 24 (1987) 1865–1877

    Article  MATH  Google Scholar 

  20. Kneppe, G.: Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken. Dissertation Universität Siegen. Fortschritt-Berichte VDI Reihe Nr. 135. Düsseldorf: VDI- Verlag 1986

    Google Scholar 

  21. Powell, M.Y.D.: A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. In: Watson, G.A.: Lecture Notes in Mathematics, No. 630. Berlin: Springer Verlag 1978

    Google Scholar 

  22. Jahn, J.: Ein Verfahren zur interaktiven Lösung nichtlinearer Vektoroptimierungsprobleme. OR Spektrum, Vol. 3 (1982) 239–243

    Article  MATH  Google Scholar 

  23. Zoutendijk, G.: Methods of Feasible Directions. A Study in Linear and Nonlinear Programming. Amsterdam, London, New York: Elsevier Publ. Comp. 1960

    Google Scholar 

  24. Frank, M.; Wolfe, P.: An Algorithm for Quadratic Programming. Naval Research Logistics Quaterly, Vol. 3, No. 1 and 2 (1956) 95–110

    Article  MathSciNet  Google Scholar 

  25. Eschenauer, H.; Post, P.U.; Bremicker, M.: Einsatz der Opti- mierungsprozedur SAPOP zur Auslegung von Bauteilkomponenten. Bauingenieur, Vol. 63 (1988) 515–526

    Google Scholar 

  26. Schnell, W.; Eschenauer, H.: Elastizitätstheorie II, Schalentheorie. Mannheim, Wien, Zürich: BI-Wissenschaftsverlag 1984

    Google Scholar 

  27. Thevendran, V.; Thambiratnam, D.P.: Minimum Weight Design of Conical Concrete Water Tanks. Computers amp; Structures, Vol. 29, No. 4 (1988) 699–704

    Article  Google Scholar 

  28. Lee, J.K. and Hurst, E.G.: Decision Support Systems for Multiple Criteria Decision Making. Joint National Meeting of ORSA/TIMS, Dallas, November 1984

    Google Scholar 

  29. Malakooti, B.: A Decision Support System and a Heuristic Interac- tive Approach for Solving Discrete Multiple Criteria Problems. IEEE Transaction Systems, Man, and Cybernetics, Vol. 18, No 2 (1988) 273–284

    Article  MathSciNet  Google Scholar 

  30. Osyczka, A.: Multicriterion Optimization in Engineering with FORTRAN Program. New York, Chichester: John Wiley 1984

    Google Scholar 

  31. Himmelblau, D.M.: Applied Nonlinear Programming. New York: McGraw-Hill Company 1972

    MATH  Google Scholar 

  32. Hooke. R.; Jeeves, T.A.: Direct Search Solution of Numerical and Statistical Problems, J. Assoc. Comp. Mech., Vol. 8 (1961) 221–225

    Google Scholar 

  33. Kowalik, J.; Osborne, M.R.: Methods for Unconstrained Optimization Problems. New York: American Elsevier 1968

    MATH  Google Scholar 

  34. Nelder, J.A.; Mead. R.: A Simplex Method for Function Minimization. Computer J.. Vol. 7 (1965) 308–313

    MATH  Google Scholar 

  35. Hammer, P.; Johnson. E.L. and Korte. B.H.: Discrete Optimization. Amsterdam: North-Holland, Pub. Comp. 1979

    Google Scholar 

  36. Barr. A.: McGill Plotting Package Subroutines Manual. Department of Applied Mathematics, University of Western Ontario, Canada, 1968

    Google Scholar 

  37. Osyczka, A.: An Interactive Multicriterion Decision Making System. System Analysis and Simulation Symposium. Berlin, 1985

    Google Scholar 

  38. Osyczka. A.: Computer Aided Multicriterion Optimization Method. Advances in Modelling and Simulation. AMSE Press, Vol. 3, No. 4 (1985) 41–52

    Google Scholar 

  39. Osyczka, A.: Computer Aided Multicriterion Optimization System (CAMOS). In: Proceedings of a GAMM-Seminar “Discretization Methods and Structural Optimization”. University of Siegen, FR Germany, October 5–7, 1988. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989

    Google Scholar 

  40. Bernau. H.: Interactive Methods for Vector Optimization. in.: Brosowski. B.; Martensen, E. (Eds): Optimization in Mathematical Physics. Frankfurt am Main, Bern. New York, Paris: Verlag Peter Lang 1987

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Eschenauer, H.A., Osyczka, A., Schäfer, E. (1990). Interactive Multicriteria Optimization in Design Process. In: Eschenauer, H., Koski, J., Osyczka, A. (eds) Multicriteria Design Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48697-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48697-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48699-9

  • Online ISBN: 978-3-642-48697-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics