Skip to main content

Spinal Cord Injury and the Possibilities of Treatment with Calcium Antagonists

  • Conference paper
Nimodipine

Abstract

Calcium is ubiquitous in the body, and not surprisingly it is implicated in many disease processes. Calcium channel antagonists have proved useful in a number of clinical settings, including hypertension, angina pectoris. cardiac arrhythmias, and cerebral vasospasm complicating subarachnoid hemorrhage [25]. The calcium channel antagonist nimodipine, a substituted 1,4-dihydropyridine, has very high lipid solubility and penetrates well into the central nervous system [21]. Thus, nimodipine has been tested for the treatment of a number of central nervous system disorders and recently has been found effective in reducing the incidence of neurological deficits after subarachnoid hemorrhage [27, 28], although its mechanism of action in this disorder remains unknown. Calcium channel antagonists have also been studied in experimental models of spinal cord injury (SCI). This paper examines the evidence for calcium-mediated damage in SCI, the presumed mechanisms, and the therapeutic possibilities provided by calcium antagonists, including nimodipine, in the treatment of SCI.

This work was supported by the Medical Research Council of Canada, the Canadian Paraplegic Association, Ontario Branch, and Miles Laboratories, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39: 236–253

    PubMed  CAS  Google Scholar 

  2. Black D. Markowitz RS, Kinkelstein SD, McMonagle-Strucko K, Gillespie JA (1988) Experimental spinal cord injury: effect of a calcium channel antagonist (nicardipine). Neurosurgery 22: 61–66

    Google Scholar 

  3. Chehrazi BB, Scremin O, Decima EE (1989) Effect of regional spinal cord blood flow and central control in recovery from spinal cord injury. J Neurosurg 71: 747–753

    Article  PubMed  CAS  Google Scholar 

  4. Choi D (1988) Calcium-mediated ncurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    Article  PubMed  CAS  Google Scholar 

  5. Dohrmann GJ, Wager FC, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. J Neurosurg 35: 263 271

    Google Scholar 

  6. Fairholm DJ. Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35: 277–286

    Google Scholar 

  7. Faden Al, Jacobs TP, Smith MT (1984) Evaluation of the calcium channel antagonist nimodipine in experimental spinal cord ischemia. J Neurosurg 60: 796–799

    Article  PubMed  CAS  Google Scholar 

  8. Fehlungs MG, Tator CH, Linden RD et al. (1988) Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol 69: 65–78

    Article  Google Scholar 

  9. Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71: 403–416

    Article  PubMed  CAS  Google Scholar 

  10. Ford RWJ, Malm DN (1985) Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nery Syst Trauma 2: 9–16

    CAS  Google Scholar 

  11. Gelbfish JS, Philips T, Rose DM, Wait R, Cunningham JN (1986) Acute spinal cord ischemia: prevention of paraplegia with verapamil. Circulation 74 [Suppl I]: I5 - I10

    PubMed  CAS  Google Scholar 

  12. Gelfan S, Tarlov IM (1955) Differential vulnerability of spinal cord structures to anoxia. J Neurophysiol 18:170–188

    Google Scholar 

  13. Gelfan S, Tarlov IM (1965) Physiology of spinal cord, nerve root and peripheral nerve compression. Am J Physiol 185: 217–229

    Google Scholar 

  14. Guha A, Tator CH, Piper I (1985) Increase in rat spinal cord blood flow with the calcium channel blocker, nimodipine. J Neurosurg 63: 250–259

    Article  PubMed  CAS  Google Scholar 

  15. Guha A, Tator CH, Piper I (1987) Effect of a calcium channel blocker on post-traumatic spinal cord blood flow. J Neurosurg 66: 423–430

    Article  PubMed  CAS  Google Scholar 

  16. Guha A, Tator CH, Smith CR, Piper I (1989) Improvement in posttraumatic spinal cord blood flow with a combination of calcium channel blocker and a vasopressor. J Trauma 29: 1440–1447

    Article  PubMed  CAS  Google Scholar 

  17. Haghighi SS, Chehrazi BB, Wagner FC (1988) Effect of nimodipine-associated hypotension on recovery from acute spinal cord injury in cats. Surg Neurol 29: 293–297

    Article  PubMed  CAS  Google Scholar 

  18. Hall ED, Wolf DL (1986) A pharmacological analysis of the pathophysiological mechanisms of post-traumatic spinal cord ischemia. J Neurosurg 64: 951–961

    Article  PubMed  CAS  Google Scholar 

  19. Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD (1981) Ca’ -accumulation in experimental spinal cord trauma. Brain Res 211: 476–479

    Article  PubMed  CAS  Google Scholar 

  20. Holtz A, Nystrom B, Herdin B (1989) Spinal cord injury in rats: inability of nimodipine or antineurophil serum to improve spinal cord blood flow or neurologic status. Acta Neurol Scand 79: 460–467

    Article  PubMed  CAS  Google Scholar 

  21. Kerckhoff van den W, Drewes LR (1985) Transfer of the Ca-antagonists nifedipine and nimodipine across the blood brain barrier and their regional distribution in vivo. J Cereb Blood Flow Metab 5: [Suppl I] 459–460

    Google Scholar 

  22. Kobrine AI, Evans DE, Rizzoli HV (1979) The effects of ischemia on long-tract neural conduction in the spinal cord. J Neurosurg 50: 639–644

    Article  PubMed  CAS  Google Scholar 

  23. Kwo S, Young W, Descrescito V (1989) Spinal cord sodium, potassium, calcium and water concentration changes in rats after graded contusion injury. J Neurotrauma 6: 13–24

    Article  PubMed  CAS  Google Scholar 

  24. Lyden PD, Zivin JA, Kockhar A, Mazzarella V (1988) Effects of calcium channel blockers on neurologic outcome after focal ischemia in rabbits. Stroke 19: 1020–1026

    Article  PubMed  CAS  Google Scholar 

  25. McEvoy GK (ed) (1990) AFHS drug information. American Society of Hospital Pharmacists, Bethesda

    Google Scholar 

  26. Parker AJ, Smith CW (1976) Functional recovery from spinal cord trauma following dexamethasone and chlorpromazine therapy in dogs. Res Vet Sci 21: 246–247

    PubMed  CAS  Google Scholar 

  27. Petruk KC, West M, Mohr G et al. (1988) Nimodipine treatment in poor-grade aneurysm patients. J Neurosurg 68: 505–517

    Article  PubMed  CAS  Google Scholar 

  28. Pickard JD, Murray GD, Illingworth R et al. (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J 298: 636–642

    Google Scholar 

  29. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10: 39–43

    Google Scholar 

  30. Sadanaga KK, Ohnishi ST (1989) Chlorpromazine protects rat spinal cord against contusion injury. J Neurotrauma 6: 153–161

    Article  PubMed  CAS  Google Scholar 

  31. Sandler AN, Tator CH (1976) Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45: 660–676

    Article  PubMed  CAS  Google Scholar 

  32. Senter HJ, Venes JL (1978) Altered blood flow and secondary injury in experimental spinal cord trauma. J Neurosurg 49: 569–578

    Article  PubMed  CAS  Google Scholar 

  33. Senter HJ, Venes JL (1979) Loss of autoregulation and post-traumatic ischemia following experimental spinal cord trauma. J Neurosurg 50: 198–206

    Article  PubMed  CAS  Google Scholar 

  34. Shi RY, Lucas JH, Wolf A, Gross GW (1989) Calcium antagonists fail to protect mammalian spinal neurons after physical injury. J Neurotrauma 6: 261–276

    Article  PubMed  CAS  Google Scholar 

  35. Somlyo AV, Somlyo AP (1968) Electromechanical and pharmacomechanical coupling in vascular smooth muscle..1 Pharmacol,Exp Ther 159: 129–145

    CAS  Google Scholar 

  36. Stokes BT, Fox P, Ilollinden CT (1983) Extracellular calcium activity in the injured spinal cord. Exp Neurol 80: 561–572

    Article  PubMed  CAS  Google Scholar 

  37. Svensson LG, Ritter von CM, Groeneveld HT et al. (1986) Cross-clamping of the thoracic aorta–influence of aortic shunts, laminectomy, papaverine, calcium channel blocker, allopurinol, and superoxide dismutase on spinal cord blood flow and paraplegia in baboons. Ann Surg 204: 38–47

    Article  PubMed  CAS  Google Scholar 

  38. Wallace MC, Tator CII (1986) Spinal cord blood flow measured with microsphcres following spinal cord injury in the rat. Can.1 Neurol Sci 13: 91–96

    CAS  Google Scholar 

  39. Young W, Yen V, Blight A (1982) Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Res 253: 105–113

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tator, C.H., Ross, I.B., Fehlings, M.G. (1991). Spinal Cord Injury and the Possibilities of Treatment with Calcium Antagonists. In: Scriabine, A., Teasdale, G.M., Tettenborn, D., Young, W. (eds) Nimodipine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48695-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48695-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53405-1

  • Online ISBN: 978-3-642-48695-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics