Skip to main content

Über die Analyse von langsamen Augenbewegungen und der zugehörigen Aktivität von okulomotorischen Neuronen bei wachen Affen

Concerning the Analysis of Slow Eye Movements and the Corresponding Activity of Single Oculomotor Units in Alert Monkeys

  • Conference paper
Augenbewegungsstörungen / Disorders of Ocular Motility

Part of the book series: Symposien der Deutschen Ophthalmologischen Gesellschaft ((OPH.GES.))

  • 37 Accesses

Zusammenfassung

Es wurden Einzelzellregistrierungen aus den Augenmuskelkernen bei wachen Affen während spontanem Umherblicken und während konditionierter Augenfolgebewegungen analysiert. Die Resultate führen zu dem Schluß, daß für eine adäquate mathematische Beschreibung der „Gemeinsamen Endstrecke” für jeden Funktionszustand des okulomotorischen Systems (z. B. Fixation oder Folgebewegungen) jeweils ein Paar von linearen Differentialgleichungen erster Ordnung zur Berücksichtigung der Agonist-Phase und der Antagonist-Phase angegeben werden muß.

Es wird ein Modell vorgestellt, welches die gemessenen Kennlinien für die Impulsrate als Funktion der Augenposition und der Geschwindigkeit erklärt, als eine Folge von Superpositionen von Positions- und Geschwindigkeits-Signalen auf der supra-nukleären und der nuklearen Ebene.

Summary

Single unit activity in the regions of the oculomotor, trochlear, and the abducens nuclei in alert monkeys (Macaca fascicularis) was recorded together with various visual stimulus time functions to elicit saccadic eye movements (EMs) and smooth pursuit EMs and the EM time functions (DC-EOG). In some cases the monkeys were conditioned to perform sinusoidal tracking EMs in the horizontal and vertical plane. During recording sessions the animals were seated with the head fixed in a primate chair.

The presented results lead to the conclusion that the hypothesis for a mathematical description of the “final common pathway” by means of one single first order differential equation (Robinson, 1970) can be replaced now by pairs of differential equations for each functional state of the oculomotor system (e.g. fixation or tracking) for the following reasons:

  1. 1.

    During fixation there exist two linear characteristics for the impulse rate (IR) versus eye position because of the “static hysteresis” (Eckmiller, 1974), which describes the IR-difference between positions reached in the agonist phase (IR-increase) and those reached in the antagonist phase (IR-decrease).

  2. 2.

    Changes from fixation to visual tracking movements lead to changes in the impulse rate level at a given eye position (Eckmiller, 1975). Therefore a mathematical description can be valid only for a given functional state of the oculomotor system.

  3. 3.

    During visual tracking movements there exist different slopes in the characteristic for IR versus eye velocity at a given eye position in the agonist phase compared to the antagonist phase (Eckmiller and Mackeben, 1976).

A model is presented which explains the measured characteristics for IR versus eye position and velocity of the motoneurons in terms of a supra-nuclear and a nuclear superposition of eye position and velocity signals.

Gefördert durch die Deutsche Forschungsgemeinschaft, Ec 43/4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Cheng, M., Outerbridge, J. S.: Optokinetic nystagmus during selective retinal stimulation. Exp. Brain Res. 23, 129–139 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Collins, C. C., O’Meara, D., Scott, A. B.: Muscle tension during unrestrained human eye movements. J. Physiol. 245, 351–369 (1975)

    PubMed  CAS  Google Scholar 

  • Eckmiller, R.: Hysteresis in the static characteristics of eye position coded neurons in the alert monkey. Pflügers Arch. 350, 249–258 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Eckmiller, R.: Differences in the activity of eye position coded neurons in the alert monkey during fixation and tracking movements. In: Basic mechanisms of ocular motility and their clinical implications. Lennerstrand, G., Bach-y-Rita, P. (eds.), p. 447–451. Oxford: Pergamon Press 1975

    Google Scholar 

  • Eckmiller, R., Mackeben, M.: Single unit activity in the oculomotor system of the monkey during slow eye movements. Pflügers Arch. 365, Suppl. R 41 (1976)

    Google Scholar 

  • Gauthier, G. M., Hofferer, J.-M.: Eye tracking of self-moved targets in the absence of vision. Exp. Brain Res. 26, 121–139 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Grüsser, O.-J., Behrens, F.: Auslösung gleitender und sakkadischer Augenbewegungen durch Flickerbelichtung unbewegter Muster. (Siehe Beitrag in diesem Symposium)

    Google Scholar 

  • Keller, E. L.: Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 37, 316–332 (1974)

    PubMed  CAS  Google Scholar 

  • Miles, F. A., Fuller, J. H.: Visual tracking and the primate flocculus. Science 189, 1000–1003 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., Ward, R. M., Brussell, E. M.: The aftereffect of tracking eye movements. Perception 5, 309–317 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Rashbass, C: The relationship between saccadic and smooth tracking eye movements. J. Physiol. 159, 326–338 (1961)

    PubMed  CAS  Google Scholar 

  • Robinson, D. A.: The mechanics of human smooth pursuit eye movement. J. Physiol. 180, 569–591 (1965)

    PubMed  CAS  Google Scholar 

  • Robinson, D. A.: Oculomotor unit behavior in the monkey. J. Neurophysiol. 33, 393–404 (1970)

    PubMed  CAS  Google Scholar 

  • Skavenski, A. A., Robinson, D. A.: Role of abducens neurons in vestibuloocular reflex. J. Neurophysiol. 36, 724–738 (1973)

    PubMed  CAS  Google Scholar 

  • Trincker, D., Sieber, J., Bartual, J.: Schwingungsanalyse der vestibulär, optokinetisch und durch elektrische Reizung ausgelösten Augenbewegungen beim Menschen. 1. Mitteilung. Stetige Augenbewegungen: Frequenzgänge und Ortskurven. Kybernetik 1, 21–28 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Westheimer, G.: Eye movement responses to a horizontally moving visual stimulus. Arch. Ophthal. 52, 932–941 (1954)

    Article  CAS  Google Scholar 

  • Yasui, S., Young, L. R.: Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190, 906–908 (1975)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 J. F. Bergmann Verlag, München

About this paper

Cite this paper

Eckmiller, R. (1978). Über die Analyse von langsamen Augenbewegungen und der zugehörigen Aktivität von okulomotorischen Neuronen bei wachen Affen. In: Kommerell, G. (eds) Augenbewegungsstörungen / Disorders of Ocular Motility. Symposien der Deutschen Ophthalmologischen Gesellschaft. J.F. Bergmann-Verlag. https://doi.org/10.1007/978-3-642-48446-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48446-9_7

  • Publisher Name: J.F. Bergmann-Verlag

  • Print ISBN: 978-3-8070-0303-0

  • Online ISBN: 978-3-642-48446-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics