Skip to main content

Spinal cord stimulation in patients: Basic anatomical and neurophysiological mechanisms

  • Conference paper
Spinal Cord Stimulation

Abstract

Peripheral vascular diseases of the legs may lead to decrease of nutritional blood flow, ischemia, pain, ulcera, and other changes. These changes may eventually result in amputation of the extremity. Repetitive electrical spinal cord stimulation in these patients may lead to increase of blood flow through skin and deep tissues of the limb (in particular through the microvascular compartment) and of transcutaneous O2-tension, may generate relief of ongoing pain (with increase of walking distance), and may be followed by healing of the ulcera (see Table 1 and contributions to this volume). This therapeutic intervention prevents amputation, at least in some of the patients, and improves quality of life. Interestingly, it does not appear to work in patients with autonomic neuropathy (e.g. in patients with diabetes mellitus) when the post-ganglionic axons are destroyed. Furthermore, the procedure is only successful, first, when the spinal stimulation electrodes are positioned over those spinal segments which contain the sympathetic outflow to the legs (i.e., in humans over the lower thoracic and two upper lumbar spinal segments) and, second, when the spinal cord stimulation generates paresthesias which are projected into the diseased limb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevan JA (1988) Basal tone in resistance arteries: role of wall stretch, flow and receptor specialization. In: Bevan JA, Majewski H, Maxwell RA, Story DF (eds) Vascular Neuroeffector Mechanisms, ICSU Symposium Series vol. 10, Oxford, Washington DC: IRL Press, pp. 1–14

    Google Scholar 

  2. Blumberg H, Wallin BG (1987) Direct evidence of neurally mediated vasodilation in hairy skin of the human foot. J Physiol 382:105–121

    PubMed  CAS  Google Scholar 

  3. Boczek-Funcke A, Dembowsky K, Häbler HJ, Jänig W, McAllen R, Michaelis M (1992) Classification of preganglionic neurones projecting into the cat cervical sympathetic trunk. J Physiol 453:319–339

    PubMed  CAS  Google Scholar 

  4. Brock JA, Cunnane TC (1992) Electrophysiology of neuroeffector transmission in smooth muscle. In: Burnstock G, Hoyle CHV (eds) Autonomic neuroeffector mechanisms, pp. 121–213, Harwood Academic Publishers, Chur, Switzerland

    Google Scholar 

  5. Chahl LA (1988) Antidromic vasodilatation and neurogenic inflammation. Pharmacol Ther 37:275–300

    Article  PubMed  CAS  Google Scholar 

  6. Chahl LA, Szolcsányi J, Lembeck F (1984) Antidromic vasodilation and neurogenic inflammation. Budapest: Akadémiai Kiadó

    Google Scholar 

  7. Esler M, Hasking IR, Willett IR, Leonard PW, Jennings GL (1985) Noradrenaline release and sympathetic nervous system activity. J Hypertens 3:117–129

    Article  PubMed  CAS  Google Scholar 

  8. Evans R, Suprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Brit J Pharmacol 106:242–249

    CAS  Google Scholar 

  9. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. Faseb J 3:2007–2018

    PubMed  CAS  Google Scholar 

  10. Häbler H-J, Jänig W, Michaelis M (1984) Respiratory modulation in the activity of sympathetic neurones. Progress in Neurobiology (in press)

    Google Scholar 

  11. Hirst GDS (1989) Neuromuscular transmission in intramural blood vessels. In: Wood JD (ed) Handbook of Physiology, Section 6: Gastrointestinal System. Vol I Motility and Circulation. Bethesda, Maryland: American Physiological Society pp. 1635–1665

    Google Scholar 

  12. Hirst GDS, Bramich NJ, Edwards FR, Klemm M (1992) Transmission at autonomic neuroeffector junctions. Trends Neurosci 15:40–46

    Article  PubMed  CAS  Google Scholar 

  13. Hirst GDS, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69:546–604

    PubMed  CAS  Google Scholar 

  14. Jänig W (1985) Organization of the lumbar sympathetic outflow of skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 102:119–213

    Article  PubMed  Google Scholar 

  15. Jänig W (1986) Spinal cord integration of visceral sensory systems and sympathetic nervous system reflexes. In: Cervero F, Morrison JFB (eds) “Visceral sensation”, Progress in Brain Res 67:255–277

    Google Scholar 

  16. Jänig W (1988) Pre- and postganglionic vasoconstrictor neurons: differentiation, types, and discharge properties. Ann Rev Physiol 50:525–539

    Article  Google Scholar 

  17. Jänig W (1990) Functions of the sympathetic innervation of the skin. In: Loewy A, Spyer KM (eds) Central Regulation of Autonomic Functions, Oxford University Press, pp. 334–348

    Google Scholar 

  18. Jänig W (1993) Vegetatives Nervensystem. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, 25th edn, Springer, Berlin Heidelberg, pp. 349–389

    Google Scholar 

  19. Jänig W, Koltzenburg M (1991) Sympathetic reflex activity and neuroeffector transmission change after chronic nerve lesions. In: Bond MR, Charlton JE, Wolf CJ (eds) “Pain Research and Clinical Management” (Proceedings of the VIth World Congress on Pain), Vol. 3, pp. 365–371, Elsevier Publishers, Amsterdam

    Google Scholar 

  20. Jänig W, Kümmel H (1981) Organization of the sympathetic innervation supplying the hairless skin of the cat’s paw. Journal of the Autonomic Nervous System 3:215–230

    Article  PubMed  Google Scholar 

  21. Jänig W, Lisney SJW (1989) Small diameter myelinated afférents produce vasodilation but not plasma extravasation in rat skin. J Physiol 415:477–486

    PubMed  Google Scholar 

  22. Jänig W, McLachlan EM (1987) Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev 67:1332–1404

    PubMed  Google Scholar 

  23. Jänig W, McLachlan EM (1992) Characteristics of function-specific pathways in the sympathetic nervous system. Trends Neurosci 15:475–481

    Article  PubMed  Google Scholar 

  24. Jänig W, Spilok N (1978) Functional organization of the sympathetic innervation supplying the hairless skin of the hindpaws in chronic spinal cats. Pflügers Archiv 377:25–31

    Article  PubMed  Google Scholar 

  25. Jänig W, Sundlöf G, Wallin BG (1983) Discharge patterns of sympathetic neurons supplying skeletal muscle and skin in man and cat. Journal of the Autonomic Nervous System 7:239–256

    Article  PubMed  Google Scholar 

  26. Jobling P (1994) Electrophysiological events during neuroeffector transmission in the spleen of guinea pig and rat. J Physiol (in press)

    Google Scholar 

  27. Jobling P, McLachlan EM, Jänig W, Anderson CR (1992) Electrophysiological responses in the rat tail artery during reinnervation following lesions of the sympathetic supply. J Physiol 454:107–128

    PubMed  CAS  Google Scholar 

  28. Johnson PC (1980) The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV, Geiger SR (eds) Handbook of Physiology, Sect. 2, Vol 11. Bethesda: American Physiological Society, pp. 409–442

    Google Scholar 

  29. Lew MJ, Duling BR (1990) Arteriolar reactivity in vivo is influenced by an intramural diffusion barrier. Am J Physiol 259:H574–H581

    PubMed  CAS  Google Scholar 

  30. Lew MJ, Rivers RJ, Duling BR (1989) Arteriolar smooth muscle responses are modulated by an intramural diffusion barrier. Am J Physiol 257:H10–H16

    PubMed  CAS  Google Scholar 

  31. Linderoth B, Fedorcsak I, Meyerson BA (1989) Is vasodilatation following dorsal column stimulation mediated by antidromic activation of small diameter afferents? Acta Neurochir-urgica, Suppl 46:99–101

    Article  CAS  Google Scholar 

  32. Lisney SJW, Bharali LAM (1989) The axon reflex: an outdated idea or a valid hypothesis? News in Physiol Sci 4:45–48

    Google Scholar 

  33. Lovén C (1866) Über die Erweiterung von Arterien in Folge einer Nervenerregung. Berichte über die Verhandlungen der königlich-sächsischen Gesellschaft der Wissenschaft: Mathematisch-physikalische Classe 18:85–110

    Google Scholar 

  34. Luff SE, McLachlan EM (1989) Frequency of neuromuscular junctions on arteries of different dimensions in the rabbit, guinea pig and rat. Blood Vessels 26:95–106

    PubMed  CAS  Google Scholar 

  35. Luff SE, McLachlan EM, Hirst GDS (1987) An ultrastructural analysis of the sympathetic neuromuscular junctions on arterioles of the submucosa of the guinea pig ileum. J comp Neurol 257:578–595

    Article  PubMed  CAS  Google Scholar 

  36. McLachlan EM, Jänig W (1983) The cell bodies of origin of sympathetic and sensory axons in some skin and muscle nerves of the cat’s hindlimb. J comp Neurol 214:115–130

    Article  PubMed  CAS  Google Scholar 

  37. Mense S (1986) Slowly conducting afferent fibers from deep tissues: neurobiological properties and central nervous actions. Progress in Sensory Physiology, Vol 6, Springer-Verlag, Heidelberg Berlin, pp. 139–219

    Chapter  Google Scholar 

  38. Mense S (1993) Nociception from skeletal muscle in relation to clinical pain. Pain 54:241–289

    Article  PubMed  CAS  Google Scholar 

  39. Morris JL, Gibbins IL (1992) Co-transmission and neuromodulation. In: Burnstock G, Hoyle CHV (eds) Autonomic neuroeffector mechanisms, pp. 33–119, Harwood Academic Publishers, Chur, Switzerland

    Google Scholar 

  40. Neild TO (1987) Actions of neuropeptide Y on innervated and denervated rat tail arteries. J Physiol 386:19–30

    PubMed  CAS  Google Scholar 

  41. Rowell LB (1986) Human circulation. Regulation during physical stress. Oxford University Press, New York Oxford

    Google Scholar 

  42. Smiesko V, Johnson PC (1993) The arterial lumen is controlled by flow-related shear stress. News in Physiol Sci 8:34–38

    Google Scholar 

  43. Szolcsányi J (1988) Antidromic vasodilation and neurogenic inflammation. Agents Actions 23:4–11

    Article  PubMed  Google Scholar 

  44. Wallin G, Stjernberg L (1984) Sympathetic activity in man after spinal cord injury. Outflow to skin below the lesion. Brain 107:183–198

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Jänig, W. (1994). Spinal cord stimulation in patients: Basic anatomical and neurophysiological mechanisms. In: Horsch, S., Claeys, L. (eds) Spinal Cord Stimulation. Steinkopff. https://doi.org/10.1007/978-3-642-48441-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48441-4_4

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-48443-8

  • Online ISBN: 978-3-642-48441-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics