Skip to main content

Laser doppler fluxmetry in peripheral vascular disease

  • Conference paper
Spinal Cord Stimulation
  • 76 Accesses

Abstract

Current skin microcirculatory methods differ in their spatial and temporal resolution and assess various intra- and subcutaneous vascular compartments. Laser Doppler fluxmetry (LDF) is characterized by its easy and non-invasive use and fast response to local changes of blood flow. Due to a measuring depth of about 1.5 mm the LDF signal reflects nutritional as well as functional fractions of the cutaneous circulation. The technique is suitable to record dynamic responses to provocational maneuvers as well as spontaneous fluctuations of skin blood flow. Presently, the LDF method has no practical meaning. It may be used to monitor physiological phenomena and pharmacological actions within the local cutaneous microcirculation [12, 13, 34].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson S, Linderholm H, Rinnström O, Burlin L (1986) A laser Doppler technique for measuring distal blood pressure: a comparison with conventional strain-gauge technique. Clin Physiol 6:329–335

    Article  PubMed  CAS  Google Scholar 

  2. Beinder E, Hoffmann U, Franzeck UK, Huch A, Huch R, Bollinger A (1992) Laser Doppler technique for the measurement of digital and segmental systolic blood pressure. Vasa 21:15–21

    PubMed  CAS  Google Scholar 

  3. Belcaro G, Vasdekis S, Rulo A, Nicolaides AN (1989) Evaluation of skin blood flow and venoarteriolar response in patients with diabetes and peripheral vascular disease by laser Doppler flowmetry. Angiology 40:953–957

    Article  PubMed  CAS  Google Scholar 

  4. Bengtsson M (1984) Changes in skin blood flow and temperature during spinal analgesia evaluated by laser Doppler flowmetry and infrared thermography. Acta Anaesthesiol Scand 28:625–630

    Article  PubMed  CAS  Google Scholar 

  5. Bongard O, Fagrell B (1990) Discrepancies between total and nutritional skin microcirculation in patients peripheral arterial occlusive disease (PAOD). Vasa 19:105–111

    Google Scholar 

  6. Caspary L, Creutzig A, Alexander K (1988) Biological zero in laser Doppler fluxmetry. Int J Microcirc: Clin Exp 7:367–371

    Google Scholar 

  7. Caspary L, Creutzig A, Alexander K (1991) Intravenous infusion of iloprost in arterial occlusive disease: dose-dependent effects on skin microcirculation. Eur J Clin Pharmacol 41:131–136

    Article  PubMed  CAS  Google Scholar 

  8. Castronouvo JJ, Pabst TS, Flanigan DP, Foster LG (1987) Noninvasive determination of skin perfusion pressure using a laser Doppler. J Cardiovasc Surg 28:253–257

    Google Scholar 

  9. Creutzig A, Caspary L, Hertel RF, Alexander K (1987) Temperature-dependent laser Doppler fluxmetry in healthy and patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 6:381–390

    Google Scholar 

  10. del Guercio R, Leonardo G, Arpaia MR (1986) Evaluation of postischemic hyperemia on the skin using laser Doppler velocimetry: Study on patients with claudicatio intermittens. Microvasc Res 32:289–299

    Google Scholar 

  11. Driessen G, Rütten W, Inhoffen W, Scheidt H, Heidtmann H (1990) Is the laser Doppler flow signal a measure of microcirculatory cell flux? Int J Microcirc: Clin Exp 9:141–161

    CAS  Google Scholar 

  12. Fagrell B (1990) Peripheral vascular diseases. In: Shepherd AP, Öberg PA (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston Dordrecht London, pp 201–213

    Google Scholar 

  13. Hoffmann U, Franzeck UK, Bollinger A (1992) Laser-Doppler-Technik bei Krankheiten der peripheren Gefäße. Dtsch Med Wschr 117:1889–1897

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann U, Schneider E, Bollinger A (1990) Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty. Cardiovasc Res 24:711–718

    Article  PubMed  CAS  Google Scholar 

  15. Hoffmann U, Yanar A, Franzeck UK, Edwards JM, Bollinger A (1990) The frequency histogram — A new method for the evaluation of laser Doppler flux motion. Microvasc Res 40:293–301

    Article  PubMed  CAS  Google Scholar 

  16. Holloway GA, Burgess EM (1983) Preliminary experience with laser Doppler velocimetry for the determination of amputation levels. Prosthet Orthot Inter 7:63–66

    Google Scholar 

  17. Holloway GA, Watkins DW (1977) Laser Doppler measurement of cutaneous blood flow. J Invest Dermatol 69:306–309

    Article  PubMed  Google Scholar 

  18. Karanfilian RG, Lynch TG, Lee BC, Long JB, Hobson RW (1984) The assessment of skin blood flow in peripheral vascular disease by laser Doppler velocimetry. Am Surg 50:641–644

    PubMed  CAS  Google Scholar 

  19. Karanfilian RG, Lynch TG, Zirul VT, Padberg FT, Jamil Z, Hobson RW (1986) The value of laser Doppler velocimetry and transcutaneous oxygen tension determination in predicting healing of ischemic forefoot ulcerations and amputations in diabetic and nondiabetic patients. J Vasc Surg 4:511–516

    PubMed  CAS  Google Scholar 

  20. Kristensen JK, Engelhardt M, Nielsen T (1983) Laser-Doppler measurement of digital blood flow regulation in normals and in patients with Raynaud’s phenomenon. Acta Derm Venereol (Stockh) 63:43–47

    CAS  Google Scholar 

  21. Kvernebo K, Slagsvold CE, Gjolberg T (1988) Laser Doppler flux reappearence time (FRT) in patients with lower limb atherosclerosis and healthy controls. Eur J Vasc Surg 2:171–176

    Google Scholar 

  22. Kvernebo K, Slagsvold CE, Stranden E (1989) Laser Doppler flowmetry in evaluation of skin post-ischaemic reactive hyperaemia. J Cardiovasc Surg 30:70–75

    CAS  Google Scholar 

  23. Kvernebo K, Slagsvold CE, Stranden E, Kroese A, Larsen S (1988) Laser Doppler flowmetry in evaluation of lower limb resting skin circulation — A study in healthy controls and atherosclerotic patients. Scand J Clin Lab Invest 48:621–626

    Article  PubMed  CAS  Google Scholar 

  24. Leonardo G, Arpaia MR, del Guercio R (1986) Evaluation of the effects of vasoactive drugs on cutaneous microcirculation by laser Doppler velocimetry. Angiology 37:12–19

    Article  PubMed  CAS  Google Scholar 

  25. Leonardo G, Arpaia MR, del Guercio R (1987) A new method for the quantitative assessment of arterial insufficiency of the limbs: Cutaneous postischemic hyperemia test by laser Doppler. Angiology 38:378–385

    Google Scholar 

  26. Lerche A, Paaske WP (1986) Laser Doppler examination of peripheral microvascular reactivity. Surg Gynecol Obstet 163:410–414

    PubMed  CAS  Google Scholar 

  27. Malvezzi L, Castronuovo JJ Jr, Swayne LC, Cone D, Trivino JZ (1992) The correlation between three methods of skin perfusion measurement: radionuclide washout, laser Doppler flow, and plethysmography. J Vasc Surg 15:823–829

    Article  PubMed  CAS  Google Scholar 

  28. Meyer JU, Burkhard PM, Secomb TW, Intaglietta M (1989) The Prony spectral line estimation (PSLE) method for the analysis of vascular oscillations. IEEE Trans Biomed Eng 36:968–971

    Google Scholar 

  29. Moneta GL, Schneider E, Jäger K, Brülisauer M, Thüring-Vollenweider U, Bollinger A (1988) Laser Doppler flux and vasomotion in patients before and after transluminal angioplasty for limb salvage. Vasa 17:26–31

    PubMed  CAS  Google Scholar 

  30. Naver H, Augustinsson LE, Elam M (1992) The vasodilating effect of spinal dorsal column stimulation is mediated by sympathetic nerves. Clin Auton Res 2:41–45

    Article  PubMed  CAS  Google Scholar 

  31. Nilsson GE, Tenland T, Öberg PA (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604

    Article  PubMed  CAS  Google Scholar 

  32. Pabst TS, Castronouvo JJ, Jackson SD, Schuler JJ, Flanigan DP (1985) Evaluation of the ischemic limb by pressure and flow measurements of the skin microcirculation as determined by laser Doppler velocimetry. Curr Surg 42:29–31

    PubMed  Google Scholar 

  33. Padberg FT Jr, Back TL, Hart LC, Franco CD (1992) Comparison of heated-probe laser Doppler and transcutaneous oxygen measurements for predicting outcome of ischemic wounds. J Cardiovasc Surg 33:715–722

    Google Scholar 

  34. Ranft J (1988) Stellenwert der Laser-Doppler-Untersuchung bei Patienten mit arterieller Verschlußkrankheit. Herz 13:382–391

    PubMed  CAS  Google Scholar 

  35. Ranft J, Heidrich H, Peters A, Trampisch H (1986) Laser-Doppler examinations in persons with healty vasculature and in patients with peripheral arterial occlusive disease. Angiology 37:818–827

    Article  PubMed  CAS  Google Scholar 

  36. Saumet JL, Dittmar A, Leftheriotis G (1986) Non-invasive measurement of skin blood flow: comparison between plethysmography, laser-Doppler-flowmeter and heat thermal clearance method. Int J Microcirc: Clin Exp 5:73–83

    Google Scholar 

  37. Scheffler A, Rieger H (1990) A microcomputer system for evaluation of laser Doppler blood flux measurements. In J Microcirc: Clin Exp 9:357–368

    Google Scholar 

  38. Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 11:249–261

    Google Scholar 

  39. Seifert H, Jäger K, Bollinger A (1988) Analysis of flow motion by the laser Dopplert technique in patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 7:223–236

    Google Scholar 

  40. Shepherd AP, Öberg PA (eds) (1990) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston Dordrecht London

    Google Scholar 

  41. Shepherd AP, Riedel GL, Kiel JW, Haumschild DJ, Maxwell LC (1987) Evaluation of an infrared laser Doppler blood flowmeter. Am J Physiol 252:G832-G839

    PubMed  CAS  Google Scholar 

  42. Smits GJ, Roman RJ, Lombard JH (1986) Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61:666–672

    PubMed  CAS  Google Scholar 

  43. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    Article  PubMed  CAS  Google Scholar 

  44. Svensson H, Bornmyr S, Svedman P (1990) Skin perfusion pressure assessed by measuring the external pressure required to stop blood cell flux. Angiology 41:169–174

    Article  PubMed  CAS  Google Scholar 

  45. Tenland T, Salerud EG, Nilsson GE, Öberg PA (1983) Spatial and temporal variations in human skin blood flow. Int J Microcirc: Clin Exp 2:81–90

    Google Scholar 

  46. Thomson MB, Lassvik V, Bengtsson M (1988) Changes in skin perfusion after sympathetic block with Guanethidine — Laser Doppler fluxmetry in human volunteers. Int J Microcirc: Clin Exp 7:123–130

    Google Scholar 

  47. Tur E, Tur M, Maibach HI, Guy RH (1983) Basal perfusion of the cutaneous microcirulation: Measurements as a function of anatomic position. J Invest Dermatol 81:442–446

    Google Scholar 

  48. Ubbink D, Jacobs M, Slaaf D, Tangelder G, Reneman R (1992) Microvascular reactivity differences between two legs of patients with unilateral lower limb ischaemia. Eur J Vasc Surg 6:269–275

    Article  PubMed  CAS  Google Scholar 

  49. Ubbink D, Kitslaar P, Tordoir J, Tangelder G, Reneman R, Jacobs M (1992) The relevance of posturally induced microvascular constriction after revascularisation in patients with chronic leg ischaemia. Eur J Vasc Surg 6:525–532

    Article  PubMed  CAS  Google Scholar 

  50. Valley MA, Bourke DL, Hamill MP, Raja SN (1993) Time course of sympathetic blockade during epidural anesthesia: laser Doppler flowmetry studies of regional skin perfusion. Anesth Analg 76:289–294

    PubMed  CAS  Google Scholar 

  51. Wahlberg E, Jörneskog G, Olofsson P, Swedenborg J, Fagrell B (1990) The influence of reactive hyperemia and leg dependency on skin microcirculation in patients with peripheral arterial occlusive disease (PAOD), with and without diabetes. Vasa 19:301–306

    Google Scholar 

  52. Wahlberg E, Olofsson P, Swedenborg J, Fagrell B (1992) Effects of local hyperemia and edema on the biological zero in laser Doppler fluxmetry (LD). Int J Microcirc: Clin Exp 11:157–165

    Google Scholar 

  53. Winsor T, Haumschild DJ, Winsor D, Mikail A (1989) Influence of local and environmental temperatures on cutaneous circulation with use of laser Doppler flowmetry. Angiology 40: 421–428

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Scheffler, A. (1994). Laser doppler fluxmetry in peripheral vascular disease. In: Horsch, S., Claeys, L. (eds) Spinal Cord Stimulation. Steinkopff. https://doi.org/10.1007/978-3-642-48441-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48441-4_12

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-48443-8

  • Online ISBN: 978-3-642-48441-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics